# Copyright (2025) Bytedance Ltd. and/or its affiliates # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import os import torch from video_depth_anything.video_depth import VideoDepthAnything from utils.dc_utils import read_video_frames, save_video if __name__ == '__main__': parser = argparse.ArgumentParser(description='Video Depth Anything') parser.add_argument('--input_video', type=str, default='./assets/example_videos/davis_rollercoaster.mp4') parser.add_argument('--output_dir', type=str, default='./outputs') parser.add_argument('--input_size', type=int, default=518) parser.add_argument('--max_res', type=int, default=1280) parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitl']) parser.add_argument('--max_len', type=int, default=-1, help='maximum length of the input video, -1 means no limit') parser.add_argument('--target_fps', type=int, default=-1, help='target fps of the input video, -1 means the original fps') parser.add_argument('--fp32', action='store_true', help='model infer with torch.float32, default is torch.float16') parser.add_argument('--grayscale', action='store_true', help='do not apply colorful palette') parser.add_argument('--save_npz', action='store_true', help='save depths as npz') parser.add_argument('--save_exr', action='store_true', help='save depths as exr') args = parser.parse_args() DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, } video_depth_anything = VideoDepthAnything(**model_configs[args.encoder]) video_depth_anything.load_state_dict(torch.load(f'./checkpoints/video_depth_anything_{args.encoder}.pth', map_location='cpu'), strict=True) video_depth_anything = video_depth_anything.to(DEVICE).eval() frames, target_fps = read_video_frames(args.input_video, args.max_len, args.target_fps, args.max_res) depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=args.input_size, device=DEVICE, fp32=args.fp32) video_name = os.path.basename(args.input_video) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) processed_video_path = os.path.join(args.output_dir, os.path.splitext(video_name)[0]+'_src.mp4') depth_vis_path = os.path.join(args.output_dir, os.path.splitext(video_name)[0]+'_vis.mp4') save_video(frames, processed_video_path, fps=fps) save_video(depths, depth_vis_path, fps=fps, is_depths=True, grayscale=args.grayscale) if args.save_npz: depth_npz_path = os.path.join(args.output_dir, os.path.splitext(video_name)[0]+'_depths.npz') np.savez_compressed(depth_npz_path, depths=depths) if args.save_exr: depth_exr_dir = os.path.join(args.output_dir, os.path.splitext(video_name)[0]+'_depths_exr') os.makedirs(depth_exr_dir, exist_ok=True) import OpenEXR import Imath for i, depth in enumerate(depths): output_exr = f"{depth_exr_dir}/frame_{i:05d}.exr" header = OpenEXR.Header(depth.shape[1], depth.shape[0]) header["channels"] = { "Z": Imath.Channel(Imath.PixelType(Imath.PixelType.FLOAT)) } exr_file = OpenEXR.OutputFile(output_exr, header) exr_file.writePixels({"Z": depth.tobytes()}) exr_file.close()