Spaces:
Sleeping
Sleeping
| # a multi agent proposal to solve HF agent course final assignment | |
| import os | |
| import dotenv | |
| from smolagents import CodeAgent | |
| #from smolagents import OpenAIServerModel | |
| from tools.fetch import fetch_webpage, search_web | |
| from smolagents import PythonInterpreterTool, InferenceClientModel | |
| from tools.yttranscript import get_youtube_transcript, get_youtube_title_description | |
| from tools.stt import get_text_transcript_from_audio_file | |
| from tools.image import analyze_image | |
| from common.mylogger import mylog | |
| from smolagents import LiteLLMModel # Import LiteLLMModel instead of OpenAIServerModel | |
| import os | |
| #from huggingface_hub import InferenceClient | |
| from functools import wraps | |
| import myprompts | |
| from groq_api import GrokApi | |
| dotenv.load_dotenv() | |
| # gemini_model = OpenAIServerModel( | |
| # model_id="gemini-2.0-flash", | |
| # api_key=os.environ["GEMINI_API_KEY"], | |
| # # Google Gemini OpenAI-compatible API base URL | |
| # api_base="https://generativelanguage.googleapis.com/v1beta/openai/", | |
| # ) | |
| # vllm_model = OpenAIServerModel( | |
| # model_id="Qwen/Qwen2.5-1.5B-Instruct", | |
| # api_base="http://192.168.1.39:18000/v1", | |
| # api_key="token-abc123", | |
| # ) | |
| # openai_41nano_model = OpenAIServerModel( | |
| # model_id="gpt-4.1-nano", | |
| # api_base="https://api.openai.com/v1", | |
| # api_key=os.environ["OPENAI_API_KEY"], | |
| # ) | |
| # openai_41mini_model = OpenAIServerModel( | |
| # model_id="gpt-4.1-mini", | |
| # api_base="https://api.openai.com/v1", | |
| # api_key=os.environ["OPENAI_API_KEY"], | |
| # ) | |
| # # --- Agent wrappers --- | |
| # groq_model = LiteLLMModel( | |
| # model_id="groq/qwen3-32b", # or any other Groq model like groq/mixtral-8x7b-32768 | |
| # api_key = os.getenv("GROQ_API_KEY"), | |
| # temperature=0.1, | |
| # max_tokens=4000, | |
| # ) | |
| # SETUP AND TEST | |
| ################### | |
| grok_api_key = os.getenv("groq_api") | |
| # Base model | |
| base_model = InferenceClientModel( | |
| provider="groq", | |
| api_key=grok_api_key, | |
| model_id="qwen/qwen3-32b", | |
| requests_per_minute=20 | |
| ) | |
| # Wrap with rate limiting | |
| My_Agent = base_model | |
| def check_final_answer(final_answer, agent_memory) -> bool: | |
| """ | |
| Check if the final answer is correct. | |
| basic check on the length of the answer. | |
| """ | |
| mylog("check_final_answer", final_answer) | |
| # if return answer is more than 200 characters, we will assume it is not correct | |
| if len(str(final_answer)) > 200: | |
| return False | |
| else: | |
| return True | |
| web_agent = CodeAgent( | |
| model=My_Agent, | |
| tools=[ | |
| search_web, | |
| fetch_webpage, | |
| ], | |
| name="web_agent", | |
| description="Use search engine to find webpages related to a subject and get the page content", | |
| additional_authorized_imports=["pandas", "numpy","bs4"], | |
| verbosity_level=1, | |
| max_steps=7, | |
| ) | |
| audiovideo_agent = CodeAgent( | |
| model=My_Agent, | |
| tools=[ | |
| get_youtube_transcript, | |
| get_youtube_title_description, | |
| get_text_transcript_from_audio_file, | |
| analyze_image | |
| ], | |
| name="audiovideo_agent", | |
| description="Extracts information from image, video or audio files from the web", | |
| additional_authorized_imports=["pandas", "numpy","bs4", "requests"], | |
| verbosity_level=1, | |
| max_steps=7, | |
| ) | |
| manager_agent = CodeAgent( | |
| model=My_Agent, | |
| tools=[ PythonInterpreterTool()], | |
| managed_agents=[web_agent, audiovideo_agent], | |
| additional_authorized_imports=["pandas", "numpy","bs4"], | |
| planning_interval=5, | |
| verbosity_level=2, | |
| final_answer_checks=[check_final_answer], | |
| max_steps=15, | |
| name="manager_agent", | |
| description="A manager agent that coordinates the work of other agents to answer questions.", | |
| ) | |
| class MultiAgent: | |
| def __init__(self): | |
| print("BasicAgent initialized.") | |
| def __call__(self, question: str) -> str: | |
| mylog(self.__class__.__name__, question) | |
| try: | |
| prefix = """You are the top agent of a multi-agent system that can answer questions by coordinating the work of other agents. | |
| You will receive a question and you will decide which agent to use to answer it. | |
| You can use the web_agent to search the web for information and for fetching the content of a web page, or the audiovideo_agent to extract information from video or audio files. | |
| You can also use your own knowledge to answer the question. | |
| You need to respect the output format that is given to you. | |
| Finding the correct answer to the question need reasoning and plannig, read the question carrefully, think step by step and do not skip any steps. | |
| """ | |
| question = prefix + "\nTHE QUESTION:\n" + question + '\n' + myprompts.output_format | |
| fixed_answer = "" | |
| fixed_answer = manager_agent.run(question) | |
| return fixed_answer | |
| except Exception as e: | |
| error = f"An error occurred while processing the question: {e}" | |
| print(error) | |
| return error | |
| if __name__ == "__main__": | |
| # Example usage | |
| asyncio.run(main()) | |
| question = """ | |
| What was the actual enrollment of the Malko competition in 2023? | |
| """ | |
| agent = MultiAgent() | |
| answer = agent(question) | |
| print(f"Answer: {answer}") |