Spaces:
Sleeping
Sleeping
Create multiagents.py
Browse files- multiagents.py +183 -0
multiagents.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# a multi agent proposal to solve HF agent course final assignment
|
| 3 |
+
import os
|
| 4 |
+
import dotenv
|
| 5 |
+
from smolagents import CodeAgent
|
| 6 |
+
#from smolagents import OpenAIServerModel
|
| 7 |
+
from tools.fetch import fetch_webpage, search_web
|
| 8 |
+
from smolagents import PythonInterpreterTool, InferenceClientModel
|
| 9 |
+
from tools.yttranscript import get_youtube_transcript, get_youtube_title_description
|
| 10 |
+
from tools.stt import get_text_transcript_from_audio_file
|
| 11 |
+
from tools.image import analyze_image
|
| 12 |
+
from common.mylogger import mylog
|
| 13 |
+
from smolagents import LiteLLMModel # Import LiteLLMModel instead of OpenAIServerModel
|
| 14 |
+
import os
|
| 15 |
+
#from huggingface_hub import InferenceClient
|
| 16 |
+
import myprompts
|
| 17 |
+
|
| 18 |
+
from groq_api import GrokApi
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
dotenv.load_dotenv()
|
| 22 |
+
|
| 23 |
+
# gemini_model = OpenAIServerModel(
|
| 24 |
+
# model_id="gemini-2.0-flash",
|
| 25 |
+
# api_key=os.environ["GEMINI_API_KEY"],
|
| 26 |
+
# # Google Gemini OpenAI-compatible API base URL
|
| 27 |
+
# api_base="https://generativelanguage.googleapis.com/v1beta/openai/",
|
| 28 |
+
# )
|
| 29 |
+
|
| 30 |
+
# vllm_model = OpenAIServerModel(
|
| 31 |
+
# model_id="Qwen/Qwen2.5-1.5B-Instruct",
|
| 32 |
+
# api_base="http://192.168.1.39:18000/v1",
|
| 33 |
+
# api_key="token-abc123",
|
| 34 |
+
# )
|
| 35 |
+
|
| 36 |
+
# openai_41nano_model = OpenAIServerModel(
|
| 37 |
+
# model_id="gpt-4.1-nano",
|
| 38 |
+
# api_base="https://api.openai.com/v1",
|
| 39 |
+
# api_key=os.environ["OPENAI_API_KEY"],
|
| 40 |
+
# )
|
| 41 |
+
|
| 42 |
+
# openai_41mini_model = OpenAIServerModel(
|
| 43 |
+
# model_id="gpt-4.1-mini",
|
| 44 |
+
# api_base="https://api.openai.com/v1",
|
| 45 |
+
# api_key=os.environ["OPENAI_API_KEY"],
|
| 46 |
+
# )
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# # --- Agent wrappers ---
|
| 51 |
+
# groq_model = LiteLLMModel(
|
| 52 |
+
# model_id="groq/qwen3-32b", # or any other Groq model like groq/mixtral-8x7b-32768
|
| 53 |
+
# api_key = os.getenv("GROQ_API_KEY"),
|
| 54 |
+
# temperature=0.1,
|
| 55 |
+
# max_tokens=4000,
|
| 56 |
+
# )
|
| 57 |
+
|
| 58 |
+
# SETUP AND TEST
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
grok_api_key = os.getenv("groq_api")
|
| 63 |
+
|
| 64 |
+
#InferenceClientModel InferenceClient
|
| 65 |
+
My_Agent = InferenceClientModel(
|
| 66 |
+
provider="groq",
|
| 67 |
+
api_key=grok_api_key,
|
| 68 |
+
model_id = "qwen/qwen3-32b"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# test_messages = [{"role": "user", "content": "What are the 3 laws of robotics"}]
|
| 72 |
+
# output_test = My_Agent(test_messages)
|
| 73 |
+
# print('1', output_test)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# My_Agent = client.chat.completions.create(
|
| 78 |
+
# model="qewn/qwen3-32b",
|
| 79 |
+
# messages=[
|
| 80 |
+
# {
|
| 81 |
+
# "role": "user",
|
| 82 |
+
# "content": "How many 'G's in 'huggingface'?"
|
| 83 |
+
# }
|
| 84 |
+
# ],
|
| 85 |
+
# )
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def check_final_answer(final_answer, agent_memory) -> bool:
|
| 90 |
+
"""
|
| 91 |
+
Check if the final answer is correct.
|
| 92 |
+
basic check on the length of the answer.
|
| 93 |
+
"""
|
| 94 |
+
mylog("check_final_answer", final_answer)
|
| 95 |
+
# if return answer is more than 200 characters, we will assume it is not correct
|
| 96 |
+
if len(str(final_answer)) > 200:
|
| 97 |
+
return False
|
| 98 |
+
else:
|
| 99 |
+
return True
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
web_agent = CodeAgent(
|
| 103 |
+
model=My_Agent,
|
| 104 |
+
tools=[
|
| 105 |
+
search_web,
|
| 106 |
+
fetch_webpage,
|
| 107 |
+
],
|
| 108 |
+
name="web_agent",
|
| 109 |
+
description="Use search engine to find webpages related to a subject and get the page content",
|
| 110 |
+
additional_authorized_imports=["pandas", "numpy","bs4"],
|
| 111 |
+
verbosity_level=1,
|
| 112 |
+
max_steps=7,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
audiovideo_agent = CodeAgent(
|
| 116 |
+
model=My_Agent,
|
| 117 |
+
tools=[
|
| 118 |
+
get_youtube_transcript,
|
| 119 |
+
get_youtube_title_description,
|
| 120 |
+
get_text_transcript_from_audio_file,
|
| 121 |
+
analyze_image
|
| 122 |
+
],
|
| 123 |
+
name="audiovideo_agent",
|
| 124 |
+
description="Extracts information from image, video or audio files from the web",
|
| 125 |
+
additional_authorized_imports=["pandas", "numpy","bs4", "requests"],
|
| 126 |
+
verbosity_level=1,
|
| 127 |
+
max_steps=7,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
manager_agent = CodeAgent(
|
| 133 |
+
model=My_Agent,
|
| 134 |
+
tools=[ PythonInterpreterTool()],
|
| 135 |
+
managed_agents=[web_agent, audiovideo_agent],
|
| 136 |
+
additional_authorized_imports=["pandas", "numpy","bs4"],
|
| 137 |
+
planning_interval=5,
|
| 138 |
+
verbosity_level=2,
|
| 139 |
+
final_answer_checks=[check_final_answer],
|
| 140 |
+
max_steps=15,
|
| 141 |
+
name="manager_agent",
|
| 142 |
+
description="A manager agent that coordinates the work of other agents to answer questions.",
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
class MultiAgent:
|
| 146 |
+
def __init__(self):
|
| 147 |
+
print("BasicAgent initialized.")
|
| 148 |
+
|
| 149 |
+
def __call__(self, question: str) -> str:
|
| 150 |
+
mylog(self.__class__.__name__, question)
|
| 151 |
+
|
| 152 |
+
try:
|
| 153 |
+
prefix = """You are the top agent of a multi-agent system that can answer questions by coordinating the work of other agents.
|
| 154 |
+
You will receive a question and you will decide which agent to use to answer it.
|
| 155 |
+
You can use the web_agent to search the web for information and for fetching the content of a web page, or the audiovideo_agent to extract information from video or audio files.
|
| 156 |
+
You can also use your own knowledge to answer the question.
|
| 157 |
+
You need to respect the output format that is given to you.
|
| 158 |
+
Finding the correct answer to the question need reasoning and plannig, read the question carrefully, think step by step and do not skip any steps.
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
question = prefix + "\nTHE QUESTION:\n" + question + '\n' + myprompts.output_format
|
| 162 |
+
|
| 163 |
+
fixed_answer = ""
|
| 164 |
+
|
| 165 |
+
fixed_answer = manager_agent.run(question)
|
| 166 |
+
|
| 167 |
+
return fixed_answer
|
| 168 |
+
except Exception as e:
|
| 169 |
+
error = f"An error occurred while processing the question: {e}"
|
| 170 |
+
print(error)
|
| 171 |
+
return error
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
if __name__ == "__main__":
|
| 175 |
+
# Example usage
|
| 176 |
+
|
| 177 |
+
asyncio.run(main())
|
| 178 |
+
question = """
|
| 179 |
+
What was the actual enrollment of the Malko competition in 2023?
|
| 180 |
+
"""
|
| 181 |
+
agent = MultiAgent()
|
| 182 |
+
answer = agent(question)
|
| 183 |
+
print(f"Answer: {answer}")
|