Spaces:
Running
Running
| import base64 | |
| import json | |
| import ast | |
| import os | |
| import re | |
| import io | |
| import math | |
| import gradio as gr | |
| import oss2 | |
| from oss2.credentials import EnvironmentVariableCredentialsProvider | |
| from openai import OpenAI | |
| from datetime import datetime | |
| from PIL import ImageDraw | |
| # Define constants | |
| DESCRIPTION = "[UI-TARS](https://github.com/bytedance/UI-TARS)" | |
| client = OpenAI( | |
| base_url=os.environ.get("ENDPOINT_URL"), | |
| api_key=os.environ.get("API_KEY") | |
| ) | |
| prompt = "Output only the coordinate of one box in your response. " | |
| auth = oss2.ProviderAuthV4(EnvironmentVariableCredentialsProvider()) | |
| endpoint = 'oss-us-east-1.aliyuncs.com' | |
| region = "us-east-1" | |
| bucket = os.environ.get("BUCKET") | |
| bucket = oss2.Bucket(auth, endpoint, bucket, region=region) | |
| def draw_point_area(image, point): | |
| radius = min(image.width, image.height) // 15 | |
| x, y = round(point[0]/1000 * image.width), round(point[1]/1000 * image.height) | |
| ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), outline='red', width=2) | |
| ImageDraw.Draw(image).ellipse((x - 2, y - 2, x + 2, y + 2), fill='red') | |
| return image | |
| def resize_image(image): | |
| max_pixels = 6000 * 28 * 28 | |
| if image.width * image.height > max_pixels: | |
| max_pixels = 2700 * 28 * 28 | |
| else: | |
| max_pixels = 1340 * 28 * 28 | |
| resize_factor = math.sqrt(max_pixels / (image.width * image.height)) | |
| width, height = int(image.width * resize_factor), int(image.height * resize_factor) | |
| image = image.resize((width, height)) | |
| return image | |
| def upload_images(session_id, image, result_image, query): | |
| img_path = f"{session_id}.png" | |
| result_img_path = f"{session_id}-draw.png" | |
| metadata = dict( | |
| query=query, | |
| resize_image=img_path, | |
| result_image=result_img_path, | |
| session_id=session_id | |
| ) | |
| img_bytes = io.BytesIO() | |
| image.save(img_bytes, format="png") | |
| img_bytes = img_bytes.getvalue() | |
| bucket.put_object(img_path, img_bytes) | |
| rst_img_bytes = io.BytesIO() | |
| result_image.save(rst_img_bytes, format="png") | |
| rst_img_bytes = rst_img_bytes.getvalue() | |
| bucket.put_object(result_img_path, rst_img_bytes) | |
| bucket.put_object(f"{session_id}.json", json.dumps(metadata)) | |
| print("end upload images") | |
| def run_ui(image, query, session_id, is_example_image): | |
| click_xy = None | |
| images_during_iterations = [] # List to store images at each step | |
| width, height = image.width, image.height | |
| image = resize_image(image) | |
| bytes = io.BytesIO() | |
| image.save(bytes, format="png") | |
| base64_image = base64.standard_b64encode(bytes.getvalue()).decode("utf-8") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}, | |
| {"type": "text", "text": prompt + query}, | |
| ], | |
| } | |
| ] | |
| response = client.chat.completions.create(model="tgi", messages=messages, temperature=1.0, top_p=0.7, max_tokens=128, frequency_penalty=1, stream=False) | |
| output_text = response.choices[0].message.content | |
| pattern = r"\((\d+,\d+)\)" | |
| match = re.search(pattern, output_text) | |
| if match: | |
| coordinates = match.group(1) | |
| click_xy = ast.literal_eval(coordinates) | |
| result_image = draw_point_area(image, click_xy) | |
| images_during_iterations.append(result_image) | |
| click_xy = round(click_xy[0]/1000 * width), round(click_xy[1]/1000 * height) | |
| # TODO: async | |
| if is_example_image == "False": | |
| upload_images(session_id, image, result_image, query) | |
| return images_during_iterations, str(click_xy) | |
| def update_vote(vote_type, image, click_image, prompt, is_example): | |
| """upload bad cases to somewhere""" | |
| if vote_type == "upvote": | |
| return "Everything good" | |
| if is_example == "True": | |
| return "Do nothing for example" | |
| click_img_path = click_image[0] # webp format | |
| image.size | |
| # TODO: upload to some where | |
| return f"Thank you for your feedback!" | |
| examples = [ | |
| ["./examples/solitaire.png", "Play the solitaire collection", True], | |
| ["./examples/weather_ui.png", "Open map", True], | |
| ["./examples/football_live.png", "click team 1 win", True], | |
| ["./examples/windows_panel.png", "switch to documents", True], | |
| ["./examples/paint_3d.png", "rotate left", True], | |
| ["./examples/finder.png", "view files from airdrop", True], | |
| ["./examples/amazon.jpg", "Search bar at the top of the page", True], | |
| ["./examples/semantic.jpg", "Home", True], | |
| ["./examples/accweather.jpg", "Select May", True], | |
| ["./examples/arxiv.jpg", "Home", True], | |
| ["./examples/health.jpg", "text labeled by 2023/11/26", True], | |
| ["./examples/ios_setting.png", "Turn off Do not disturb.", True], | |
| ] | |
| title_markdown = (""" | |
| # UI-TARS Pioneering Automated GUI Interaction with Native Agents | |
| [[🤗Model](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT)] [[⌨️Code](https://github.com/bytedance/UI-TARS)] [[📑Paper](https://github.com/bytedance/UI-TARS/blob/main/UI_TARS_paper.pdf)] [🏄[Midscene (Browser Automation)](https://github.com/web-infra-dev/Midscene)] [🫨[Discord](https://discord.gg/txAE43ps)] | |
| """) | |
| tos_markdown = (""" | |
| ### Terms of use | |
| This demo is governed by the original license of UI-TARS. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, including hate speech, violence, pornography, deception, etc. (注:本演示受UI-TARS的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。) | |
| """) | |
| learn_more_markdown = (""" | |
| ### License | |
| Apache License 2.0 | |
| """) | |
| code_adapt_markdown = (""" | |
| ### Acknowledgments | |
| The app code is modified from [ShowUI](https://huggingface.co/spaces/showlab/ShowUI) | |
| """) | |
| block_css = """ | |
| #buttons button { | |
| min-width: min(120px,100%); | |
| } | |
| #chatbot img { | |
| max-width: 80%; | |
| max-height: 80vh; | |
| width: auto; | |
| height: auto; | |
| object-fit: contain; | |
| } | |
| """ | |
| def build_demo(): | |
| with gr.Blocks(title="UI-TARS Demo", theme=gr.themes.Default(), css=block_css) as demo: | |
| state_session_id = gr.State(value=None) | |
| gr.Markdown(title_markdown) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| imagebox = gr.Image(type="pil", label="Input Screenshot") | |
| textbox = gr.Textbox( | |
| show_label=True, | |
| placeholder="Enter an instruction and press Submit", | |
| label="Instruction", | |
| ) | |
| submit_btn = gr.Button(value="Submit", variant="primary") | |
| with gr.Column(scale=6): | |
| output_gallery = gr.Gallery(label="Output with click", object_fit="contain", preview=True) | |
| # output_gallery = gr.Gallery(label="Iterative Refinement") | |
| gr.HTML( | |
| """ | |
| <p><strong>Notice:</strong> The <span style="color: red;">red point</span> with a circle on the output image represents the predicted coordinates for a click.</p> | |
| """ | |
| ) | |
| with gr.Row(): | |
| output_coords = gr.Textbox(label="Final Coordinates") | |
| image_size = gr.Textbox(label="Image Size") | |
| gr.HTML( | |
| """ | |
| <p><strong>Expected result or not? help us improve! ⬇️</strong></p> | |
| """ | |
| ) | |
| with gr.Row(elem_id="action-buttons", equal_height=True): | |
| upvote_btn = gr.Button(value="👍 Looks good!", variant="secondary") | |
| downvote_btn = gr.Button(value="👎 Wrong coordinates!", variant="secondary") | |
| clear_btn = gr.Button(value="🗑️ Clear", interactive=True) | |
| with gr.Column(scale=3): | |
| gr.Examples( | |
| examples=[[e[0], e[1]] for e in examples], | |
| inputs=[imagebox, textbox], | |
| outputs=[textbox], # Only update the query textbox | |
| examples_per_page=3, | |
| ) | |
| is_example_dropdown = gr.Dropdown( | |
| choices=["True", "False"], | |
| value="False", | |
| visible=False, | |
| label="Is Example Image", | |
| ) | |
| def set_is_example(query): | |
| for _, example_query, is_example in examples: | |
| if query.strip() == example_query.strip(): | |
| return str(is_example) # Return as string for Dropdown compatibility | |
| return "False" | |
| textbox.change( | |
| set_is_example, | |
| inputs=[textbox], | |
| outputs=[is_example_dropdown], | |
| ) | |
| def on_submit(image, query, is_example_image): | |
| if image is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| session_id = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| images_during_iterations, click_coords = run_ui(image, query, session_id, is_example_image) | |
| return images_during_iterations, click_coords, session_id, f"{image.width}x{image.height}" | |
| submit_btn.click( | |
| on_submit, | |
| [imagebox, textbox, is_example_dropdown], | |
| [output_gallery, output_coords, state_session_id, image_size], | |
| ) | |
| clear_btn.click( | |
| lambda: (None, None, None, None, None, None), | |
| inputs=None, | |
| outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id, image_size], | |
| queue=False | |
| ) | |
| upvote_btn.click( | |
| lambda image, click_image, prompt, is_example: update_vote("upvote", image, click_image, prompt, is_example), | |
| inputs=[imagebox, output_gallery, textbox, is_example_dropdown], | |
| outputs=[], | |
| queue=False | |
| ) | |
| downvote_btn.click( | |
| lambda image, click_image, prompt, is_example: update_vote("downvote", image, click_image, prompt, is_example), | |
| inputs=[imagebox, output_gallery, textbox, is_example_dropdown], | |
| outputs=[], | |
| queue=False | |
| ) | |
| gr.Markdown(tos_markdown) | |
| gr.Markdown(learn_more_markdown) | |
| gr.Markdown(code_adapt_markdown) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = build_demo() | |
| demo.queue(api_open=False).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| debug=True, | |
| ) |