File size: 6,778 Bytes
a9fb7e9
 
 
 
 
 
 
 
 
 
 
cb6eafc
a9fb7e9
 
 
 
 
 
cb6eafc
a9fb7e9
 
 
 
 
cb6eafc
a9fb7e9
 
 
 
 
 
 
 
 
cb6eafc
a9fb7e9
 
 
cb6eafc
a9fb7e9
 
 
 
 
cb6eafc
a9fb7e9
 
 
 
 
 
 
 
 
 
 
 
cb6eafc
a9fb7e9
 
 
 
cb6eafc
a9fb7e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6eafc
a9fb7e9
 
 
 
 
cb6eafc
a9fb7e9
cb6eafc
 
a9fb7e9
 
 
 
cb6eafc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9fb7e9
cb6eafc
 
 
 
 
 
a9fb7e9
cb6eafc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9fb7e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6eafc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
from config import CHAT_SYSTEM_PROMPT_PLACEHOLDER, CHAT_MODEL_SPECS
from models import get_model_response
import logging
import copy

logger = logging.getLogger(__name__)

# --- Backend Logic ---

def handle_chat(message, history, system_prompt, temperature, model_id):
    """Core function to handle chat message submission"""
    logger.debug(f"handle_chat 输入: message={message}, history={history}, system_prompt={system_prompt}, temperature={temperature}, model_id={model_id}")
    if history is None:
        history = []
    history = copy.deepcopy(history)
    history.append((message, ""))
    
    # Get the display name from the spec
    model_display_name = CHAT_MODEL_SPECS.get(model_id, {}).get("display_name", model_id)
    
    is_first_chunk = True
    for chunk in get_model_response(model_id, history, system_prompt, temperature):
        if is_first_chunk:
            # Add model name before the first chunk
            history[-1] = (message, f"**{model_display_name}**\n\n" + chunk)
            is_first_chunk = False
        else:
            history[-1] = (message, history[-1][1] + chunk)
        yield copy.deepcopy(history), ""

# --- UI Event Handlers ---

def handle_model_change(model_id):
    """Update UI when user switches model"""
    spec = CHAT_MODEL_SPECS[model_id]
    scenarios = spec.get("prompt_scenarios", [])
    
    # Load the first scenario by default
    if scenarios:
        first_scenario = scenarios[0]
        scenario_titles = [[s["title"]] for s in scenarios]
        message_examples = [[m] for m in first_scenario["message_examples"]]
        system_prompt_value = first_scenario["system_prompt"]
    else: # Compatible with no scenarios
        scenario_titles = []
        message_examples = []
        system_prompt_value = ""

    return (
        gr.update(value=spec["description"]),
        gr.update(samples=scenario_titles),
        gr.update(value=system_prompt_value),
        gr.update(samples=message_examples)
    )

def handle_scenario_selection(model_id, evt: gr.SelectData):
    """Update UI when user selects a scenario from the dataset"""
    logger.debug(f"--- Scenario Selection Event ---")
    logger.debug(f"Selected event value: {evt.value}")
    logger.debug(f"Type of event value: {type(evt.value)}")
    
    # Correction: extract string from list
    selected_title = evt.value[0] if isinstance(evt.value, list) and evt.value else None
    if not selected_title:
        logger.error("Selected event value is not a valid list or is empty.")
        return gr.update(), gr.update()

    spec = CHAT_MODEL_SPECS[model_id]
    scenarios = spec.get("prompt_scenarios", [])
    
    available_titles = [s['title'] for s in scenarios]
    logger.debug(f"Available scenario titles for model '{model_id}': {available_titles}")

    selected_scenario = next((s for s in scenarios if s["title"] == selected_title), None)
    
    if selected_scenario:
        logger.debug(f"Found matching scenario: '{selected_title}'")
        system_prompt_value = selected_scenario["system_prompt"]
        message_examples = [[m] for m in selected_scenario["message_examples"]]
        return gr.update(value=system_prompt_value), gr.update(samples=message_examples)
    
    logger.warning(f"No matching scenario found for title: '{selected_title}'")
    # If no scenario is found, do not update
    return gr.update(), gr.update()

# --- UI Creation ---

def create_chat_tab():
    """Create and return all Gradio components for the chat tab"""
    
    # Extract model information from config for UI display
    # choices is a list of (display_name, model_id) tuples
    model_choices = [(spec["display_name"], model_id) for model_id, spec in CHAT_MODEL_SPECS.items()]
    default_model_id = list(CHAT_MODEL_SPECS.keys())[0]
    default_spec = CHAT_MODEL_SPECS[default_model_id]
    default_scenarios = default_spec.get("prompt_scenarios", [])

    with gr.Row():
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(
                label="Chat Window",
                bubble_full_width=False,
                height=500,
                value=[(None, "Hello! I'm Ling. Try selecting a scenario and a message example below to get started.")]
            )
            with gr.Row():
                chat_input = gr.Textbox(placeholder="Ask me anything...", label="Input", show_label=False, scale=4)
                send_button = gr.Button("Send", variant="primary", scale=1)

            # 新的场景化示例区域
            with gr.Accordion("✨ Try these scenarios...", open=True):
                # 场景选择器
                scenario_selector = gr.Dataset(
                    components=[gr.Textbox(visible=False)],
                    samples=[[s["title"]] for s in default_scenarios],
                    label="System Prompt Examples",
                    headers=["Select a role or task to get started:"],
                )
                # 消息示例
                message_examples_display = gr.Dataset(
                    components=[chat_input],
                    samples=[[m] for m in default_scenarios[0]["message_examples"]] if default_scenarios else [],
                    label="Message Examples",
                    headers=["Then, try these specific questions:"],
                )

        with gr.Column(scale=1):
            model_selector = gr.Radio(
                choices=model_choices,
                label="Select Model",
                value=default_model_id
            )
            model_description = gr.Markdown(default_spec["description"])
            system_prompt = gr.Textbox(
                label="System Prompt",
                lines=8,
                placeholder=CHAT_SYSTEM_PROMPT_PLACEHOLDER,
                value=default_scenarios[0]["system_prompt"] if default_scenarios else ""
            )
            temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, step=0.1, label="Temperature")

    # --- Event Listeners ---
    model_selector.change(
        fn=handle_model_change,
        inputs=[model_selector],
        outputs=[model_description, scenario_selector, system_prompt, message_examples_display]
    )
    
    scenario_selector.select(
        fn=handle_scenario_selection,
        inputs=[model_selector],
        outputs=[system_prompt, message_examples_display]
    )

    message_examples_display.click(
        fn=lambda value: value[0],
        inputs=[message_examples_display],
        outputs=[chat_input]
    )
    
    return {
        "chatbot": chatbot,
        "chat_input": chat_input,
        "send_button": send_button,
        "system_prompt": system_prompt,
        "temperature_slider": temperature_slider,
        "model_selector": model_selector,
    }