Spaces:
Build error
Build error
| from fastapi import APIRouter | |
| from datetime import datetime | |
| from datasets import load_dataset | |
| from sklearn.metrics import accuracy_score | |
| import random | |
| from transformers import pipeline, AutoConfig | |
| import os | |
| from concurrent.futures import ThreadPoolExecutor | |
| from typing import List, Dict, Tuple | |
| import numpy as np | |
| import torch | |
| from .utils.evaluation import TextEvaluationRequest | |
| from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
| # Disable torch compile | |
| os.environ["TORCH_COMPILE_DISABLE"] = "1" | |
| router = APIRouter() | |
| DESCRIPTION = "ModernBert fine-tuned" | |
| ROUTE = "/text" | |
| class TextClassifier: | |
| def __init__(self): | |
| # Add retry mechanism for model initialization | |
| max_retries = 3 | |
| for attempt in range(max_retries): | |
| try: | |
| self.config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit") | |
| self.label2id = self.config.label2id | |
| self.classifier = pipeline( | |
| "text-classification", | |
| "camillebrl/ModernBERT-envclaims-overfit", | |
| device="cpu", | |
| batch_size=16 | |
| ) | |
| print("Model initialized successfully") | |
| break | |
| except Exception as e: | |
| if attempt == max_retries - 1: | |
| raise Exception(f"Failed to initialize model after {max_retries} attempts: {str(e)}") | |
| print(f"Attempt {attempt + 1} failed, retrying...") | |
| time.sleep(1) | |
| def process_batch(self, batch: List[str], batch_idx: int) -> Tuple[List[int], int]: | |
| """Process a batch of texts and return their predictions""" | |
| max_retries = 3 | |
| for attempt in range(max_retries): | |
| try: | |
| print(f"Processing batch {batch_idx} with {len(batch)} items (attempt {attempt + 1})") | |
| # Process texts one by one in case of errors | |
| predictions = [] | |
| for text in batch: | |
| try: | |
| pred = self.classifier(text) | |
| pred_label = self.label2id[pred[0]["label"]] | |
| predictions.append(pred_label) | |
| except Exception as e: | |
| print(f"Error processing text in batch {batch_idx}: {str(e)}") | |
| if not predictions: | |
| raise Exception("No predictions generated for batch") | |
| print(f"Completed batch {batch_idx} with {len(predictions)} predictions") | |
| return predictions, batch_idx | |
| except Exception as e: | |
| if attempt == max_retries - 1: | |
| print(f"Final error in batch {batch_idx}: {str(e)}") | |
| return [0] * len(batch), batch_idx # Return default predictions instead of empty list | |
| print(f"Error in batch {batch_idx} (attempt {attempt + 1}): {str(e)}") | |
| time.sleep(1) | |
| async def evaluate_text(request: TextEvaluationRequest): | |
| """ | |
| Evaluate text classification for climate disinformation detection. | |
| Current Model: Random Baseline | |
| - Makes random predictions from the label space (0-7) | |
| - Used as a baseline for comparison | |
| """ | |
| # Get space info | |
| username, space_url = get_space_info() | |
| # Define the label mapping | |
| LABEL_MAPPING = { | |
| "0_not_relevant": 0, | |
| "1_not_happening": 1, | |
| "2_not_human": 2, | |
| "3_not_bad": 3, | |
| "4_solutions_harmful_unnecessary": 4, | |
| "5_science_unreliable": 5, | |
| "6_proponents_biased": 6, | |
| "7_fossil_fuels_needed": 7 | |
| } | |
| # Load and prepare the dataset | |
| dataset = load_dataset(request.dataset_name) | |
| # Convert string labels to integers | |
| dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
| # Split dataset | |
| train_test = dataset["train"] | |
| test_dataset = dataset["test"] | |
| # Start tracking emissions | |
| tracker.start() | |
| tracker.start_task("inference") | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE CODE HERE | |
| # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
| #-------------------------------------------------------------------------------------------- | |
| true_labels = test_dataset["label"] | |
| # Initialize the model once | |
| classifier = TextClassifier() | |
| # Prepare batches | |
| batch_size = 32 | |
| quotes = test_dataset["quote"] | |
| num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0) | |
| batches = [ | |
| quotes[i * batch_size:(i + 1) * batch_size] | |
| for i in range(num_batches) | |
| ] | |
| # Initialize batch_results before parallel processing | |
| batch_results = [[] for _ in range(num_batches)] | |
| # Process batches in parallel | |
| max_workers = min(os.cpu_count(), 4) # Limit to 4 workers or CPU count | |
| print(f"Processing with {max_workers} workers") | |
| with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
| # Submit all batches for processing | |
| future_to_batch = { | |
| executor.submit( | |
| classifier.process_batch, | |
| batch, | |
| idx | |
| ): idx for idx, batch in enumerate(batches) | |
| } | |
| # Collect results in order | |
| for future in future_to_batch: | |
| batch_idx = future_to_batch[future] | |
| try: | |
| predictions, idx = future.result() | |
| if predictions: # Only store non-empty predictions | |
| batch_results[idx] = predictions | |
| print(f"Stored results for batch {idx} ({len(predictions)} predictions)") | |
| except Exception as e: | |
| print(f"Failed to get results for batch {batch_idx}: {e}") | |
| # Use default predictions instead of empty list | |
| batch_results[batch_idx] = [0] * len(batches[batch_idx]) | |
| # Flatten predictions while maintaining order | |
| predictions = [] | |
| for batch_preds in batch_results: | |
| if batch_preds is not None: | |
| predictions.extend(batch_preds) | |
| #-------------------------------------------------------------------------------------------- | |
| # YOUR MODEL INFERENCE STOPS HERE | |
| #-------------------------------------------------------------------------------------------- | |
| # Stop tracking emissions | |
| emissions_data = tracker.stop_task() | |
| # Calculate accuracy | |
| accuracy = accuracy_score(true_labels, predictions) | |
| print("accuracy : ", accuracy) | |
| # Prepare results dictionary | |
| results = { | |
| "username": username, | |
| "space_url": space_url, | |
| "submission_timestamp": datetime.now().isoformat(), | |
| "model_description": DESCRIPTION, | |
| "accuracy": float(accuracy), | |
| "energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
| "emissions_gco2eq": emissions_data.emissions * 1000, | |
| "emissions_data": clean_emissions_data(emissions_data), | |
| "api_route": ROUTE, | |
| "dataset_config": { | |
| "dataset_name": request.dataset_name, | |
| "test_size": request.test_size, | |
| "test_seed": request.test_seed | |
| } | |
| } | |
| print("results : ", results) | |
| return results |