Spaces:
Build error
Build error
Update tasks/text.py
Browse files- tasks/text.py +65 -12
tasks/text.py
CHANGED
|
@@ -4,10 +4,18 @@ from datasets import load_dataset
|
|
| 4 |
from sklearn.metrics import accuracy_score
|
| 5 |
import random
|
| 6 |
from transformers import pipeline, AutoConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
from .utils.evaluation import TextEvaluationRequest
|
| 9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
router = APIRouter()
|
| 12 |
|
| 13 |
DESCRIPTION = "Random Baseline"
|
|
@@ -61,19 +69,64 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 61 |
true_labels = test_dataset["label"]
|
| 62 |
config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit")
|
| 63 |
label2id = config.label2id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
classifier = pipeline(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
#--------------------------------------------------------------------------------------------
|
| 78 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 79 |
#--------------------------------------------------------------------------------------------
|
|
|
|
| 4 |
from sklearn.metrics import accuracy_score
|
| 5 |
import random
|
| 6 |
from transformers import pipeline, AutoConfig
|
| 7 |
+
import os
|
| 8 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 9 |
+
from typing import List, Dict
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
|
| 13 |
from .utils.evaluation import TextEvaluationRequest
|
| 14 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 15 |
|
| 16 |
+
# Disable torch compile
|
| 17 |
+
os.environ["TORCH_COMPILE_DISABLE"] = "1"
|
| 18 |
+
|
| 19 |
router = APIRouter()
|
| 20 |
|
| 21 |
DESCRIPTION = "Random Baseline"
|
|
|
|
| 69 |
true_labels = test_dataset["label"]
|
| 70 |
config = AutoConfig.from_pretrained("camillebrl/ModernBERT-envclaims-overfit")
|
| 71 |
label2id = config.label2id
|
| 72 |
+
# classifier = pipeline(
|
| 73 |
+
# "text-classification",
|
| 74 |
+
# "camillebrl/ModernBERT-envclaims-overfit",
|
| 75 |
+
# device="cpu"
|
| 76 |
+
# )
|
| 77 |
+
# print("len dataset : ", len(test_dataset["quote"]))
|
| 78 |
+
# predictions = []
|
| 79 |
+
# for batch in range(0, len(test_dataset["quote"]), 32): # Ajustez la taille des batchs
|
| 80 |
+
# batch_quotes = test_dataset["quote"][batch:batch + 32]
|
| 81 |
+
# batch_predictions = classifier(batch_quotes)
|
| 82 |
+
# predictions.extend([label2id[pred["label"]] for pred in batch_predictions])
|
| 83 |
+
# print(predictions)
|
| 84 |
+
# print("final predictions : ", predictions)
|
| 85 |
+
# Initialize the model once
|
| 86 |
classifier = pipeline(
|
| 87 |
+
"text-classification",
|
| 88 |
+
"camillebrl/ModernBERT-envclaims-overfit",
|
| 89 |
+
device="cpu", # Explicitly set device
|
| 90 |
+
batch_size=16 # Set batch size for pipeline
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Prepare batches
|
| 94 |
+
batch_size = 32
|
| 95 |
+
quotes = test_dataset["quote"]
|
| 96 |
+
num_batches = len(quotes) // batch_size + (1 if len(quotes) % batch_size != 0 else 0)
|
| 97 |
+
batches = [
|
| 98 |
+
quotes[i * batch_size:(i + 1) * batch_size]
|
| 99 |
+
for i in range(num_batches)
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
# Process batches in parallel
|
| 103 |
+
max_workers = min(os.cpu_count(), 4) # Limit to 4 workers or CPU count
|
| 104 |
+
print(f"Processing with {max_workers} workers")
|
| 105 |
+
|
| 106 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 107 |
+
# Submit all batches for processing
|
| 108 |
+
future_to_batch = {
|
| 109 |
+
executor.submit(
|
| 110 |
+
process_batch,
|
| 111 |
+
batch,
|
| 112 |
+
classifier,
|
| 113 |
+
label2id
|
| 114 |
+
): i for i, batch in enumerate(batches)
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
# Collect results in order
|
| 118 |
+
batch_predictions = [[] for _ in range(len(batches))]
|
| 119 |
+
for future in future_to_batch:
|
| 120 |
+
batch_idx = future_to_batch[future]
|
| 121 |
+
try:
|
| 122 |
+
batch_predictions[batch_idx] = future.result()
|
| 123 |
+
except Exception as e:
|
| 124 |
+
print(f"Batch {batch_idx} generated an exception: {e}")
|
| 125 |
+
batch_predictions[batch_idx] = []
|
| 126 |
+
|
| 127 |
+
# Flatten predictions
|
| 128 |
+
predictions = [pred for batch in batch_predictions for pred in batch]
|
| 129 |
+
|
| 130 |
#--------------------------------------------------------------------------------------------
|
| 131 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 132 |
#--------------------------------------------------------------------------------------------
|