Update app.py
Browse filesImprove app look and capabilities
app.py
CHANGED
|
@@ -1,24 +1,55 @@
|
|
| 1 |
from transformers import pipeline
|
| 2 |
from PIL import Image
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Load your model from the Hub
|
| 6 |
-
|
|
|
|
| 7 |
|
| 8 |
# Define the inference function
|
| 9 |
-
def classify_image(image):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Create Gradio interface
|
| 16 |
demo = gr.Interface(
|
| 17 |
fn=classify_image,
|
| 18 |
-
inputs=
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
title="NSFW Image Classifier",
|
| 21 |
-
description="Upload an image and get a prediction using the Freepik/nsfw_image_detector model."
|
| 22 |
)
|
| 23 |
|
| 24 |
# Launch app
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
from PIL import Image
|
| 3 |
import gradio as gr
|
| 4 |
+
from nsfw_image_detector import NSFWDetector
|
| 5 |
+
import torch
|
| 6 |
|
| 7 |
# Load your model from the Hub
|
| 8 |
+
classifier_pipe = pipeline("image-classification", model="Freepik/nsfw_image_detector")
|
| 9 |
+
classifier_nsfw = NSFWDetector(dtype=torch.bfloat16, device="cpu")
|
| 10 |
|
| 11 |
# Define the inference function
|
| 12 |
+
def classify_image(image, confidence_level):
|
| 13 |
+
# Get predictions from both models
|
| 14 |
+
result_nsfw_proba = classifier_nsfw.predict_proba(image)
|
| 15 |
+
is_nsfw_method = result_nsfw_proba[0][confidence_level] >= 0.5
|
| 16 |
+
result_pipe = classifier_pipe(image)
|
| 17 |
+
|
| 18 |
+
# Format NSFW probability scores
|
| 19 |
+
proba_dict = result_nsfw_proba[0]
|
| 20 |
+
nsfw_proba_str = "NSFW Probability Scores:\n"
|
| 21 |
+
for level, score in proba_dict.items():
|
| 22 |
+
nsfw_proba_str += f"{level.value.title()}: {score:.4f}\n"
|
| 23 |
+
|
| 24 |
+
# Format NSFW classification
|
| 25 |
+
is_nsfw_str = f"NSFW Classification ({confidence_level.title()}):\n"
|
| 26 |
+
is_nsfw_str += "🔴 True" if is_nsfw_method else "🟢 False"
|
| 27 |
+
|
| 28 |
+
# Format pipeline results
|
| 29 |
+
pipe_str = "Pipeline Results:\n"
|
| 30 |
+
for result in result_pipe:
|
| 31 |
+
pipe_str += f"{result['label']}: {result['score']:.4f}\n"
|
| 32 |
+
|
| 33 |
+
return nsfw_proba_str, is_nsfw_str, pipe_str
|
| 34 |
|
| 35 |
# Create Gradio interface
|
| 36 |
demo = gr.Interface(
|
| 37 |
fn=classify_image,
|
| 38 |
+
inputs=[
|
| 39 |
+
gr.Image(type="pil", label="Upload an image"),
|
| 40 |
+
gr.Dropdown(
|
| 41 |
+
choices=["low", "medium", "high"],
|
| 42 |
+
value="medium",
|
| 43 |
+
label="Low is the most restrictive, high is the least restrictive"
|
| 44 |
+
)
|
| 45 |
+
],
|
| 46 |
+
outputs=[
|
| 47 |
+
gr.Textbox(label="NSFW Probability Scores (recommended)", lines=3),
|
| 48 |
+
gr.Textbox(label="NSFW Classification (recommended)", lines=2),
|
| 49 |
+
gr.Textbox(label="Pipeline Results (not recommended, specially in production)", lines=3)
|
| 50 |
+
],
|
| 51 |
title="NSFW Image Classifier",
|
| 52 |
+
description="Upload an image and select a confidence level to get a prediction using the Freepik/nsfw_image_detector model."
|
| 53 |
)
|
| 54 |
|
| 55 |
# Launch app
|