Christopher Capobianco
commited on
Commit
·
7234ab5
1
Parent(s):
1345ad3
Update application file
Browse files
app.py
CHANGED
|
@@ -1,5 +1,72 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
st.
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
|
| 4 |
+
# Page title
|
| 5 |
+
st.title("Chris Capobianco's ML Portfolio")
|
| 6 |
|
| 7 |
+
st.markdown('Hello, welcome to my ML portfolio.')
|
| 8 |
+
st.markdown('Please have a look at the descriptions below, and select a project from the sidebar.')
|
| 9 |
+
|
| 10 |
+
st.header('Projects', divider='red')
|
| 11 |
+
|
| 12 |
+
mv = Image.open("assets/movie.jpg")
|
| 13 |
+
# wp = Image.open("assets/weather.png")
|
| 14 |
+
sm = Image.open("assets/stock-market.png")
|
| 15 |
+
mu = Image.open("assets/music.jpg")
|
| 16 |
+
llm = Image.open("assets/llm.png")
|
| 17 |
+
|
| 18 |
+
with st.container():
|
| 19 |
+
text_column, image_column = st.columns((3,1))
|
| 20 |
+
with text_column:
|
| 21 |
+
st.subheader("Movie Recommendation", divider="green")
|
| 22 |
+
st.markdown("""
|
| 23 |
+
- Created a content based recommendation system using cosine similarity
|
| 24 |
+
- Trained on almost 5k movies and credits from the TMDB dataset available at Kaggle
|
| 25 |
+
""")
|
| 26 |
+
with image_column:
|
| 27 |
+
st.image(mv)
|
| 28 |
+
|
| 29 |
+
# with st.container():
|
| 30 |
+
# text_column, image_column = st.columns((3,1))
|
| 31 |
+
# with text_column:
|
| 32 |
+
# st.subheader("Weather Classification", divider="green")
|
| 33 |
+
# st.markdown("""
|
| 34 |
+
# - Created a Random Forest classification model to predict the weather
|
| 35 |
+
# - Trained on three years of data for the city of Seattle, Washington
|
| 36 |
+
# """)
|
| 37 |
+
# with image_column:
|
| 38 |
+
# st.image(wp)
|
| 39 |
+
|
| 40 |
+
with st.container():
|
| 41 |
+
text_column, image_column = st.columns((3,1))
|
| 42 |
+
with text_column:
|
| 43 |
+
st.subheader("Stock Market Forecast", divider="green")
|
| 44 |
+
st.markdown("""
|
| 45 |
+
- Created a two layer GRU model to forecast of stock prices
|
| 46 |
+
- Trained on 2006-2018 closing prices of four well known stocks
|
| 47 |
+
""")
|
| 48 |
+
with image_column:
|
| 49 |
+
st.image(sm)
|
| 50 |
+
|
| 51 |
+
with st.container():
|
| 52 |
+
text_column, image_column = st.columns((3,1))
|
| 53 |
+
with text_column:
|
| 54 |
+
st.subheader("Generative Music", divider="green")
|
| 55 |
+
st.markdown("""
|
| 56 |
+
- Created a LSTM model to generate music
|
| 57 |
+
- Trained on MIDI files from Final Fantasy series
|
| 58 |
+
""")
|
| 59 |
+
with image_column:
|
| 60 |
+
st.image(mu)
|
| 61 |
+
|
| 62 |
+
with st.container():
|
| 63 |
+
text_column, image_column = st.columns((3,1))
|
| 64 |
+
with text_column:
|
| 65 |
+
st.subheader("Fine Tuned LLM", divider="green")
|
| 66 |
+
st.warning("**Work In Progress**")
|
| 67 |
+
st.markdown("""
|
| 68 |
+
- Fine tuned a LLM to act like math assistant
|
| 69 |
+
- The base model is Meta's Llama 3.1 (8B) Instruct
|
| 70 |
+
""")
|
| 71 |
+
with image_column:
|
| 72 |
+
st.image(llm)
|