Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import time
|
| 4 |
+
from transformers import pipeline,AutoModelForCausalLM,AutoTokenizer
|
| 5 |
+
from typing import Tuple
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
import soundfile as sf
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# Initialize image captioning pipeline with pretrained model
|
| 11 |
+
# Model source: Hugging Face Model Hub
|
| 12 |
+
_image_caption_pipeline = pipeline(
|
| 13 |
+
task="image-to-text",
|
| 14 |
+
model="noamrot/FuseCap_Image_Captioning"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# Global model configuration constants
|
| 18 |
+
_MODEL_NAME = "Qwen/Qwen3-1.7B"
|
| 19 |
+
_THINKING_TOKEN_ID = 151668 # Special token marking thinking/content separation
|
| 20 |
+
|
| 21 |
+
# Initialize model components once
|
| 22 |
+
_tokenizer = AutoTokenizer.from_pretrained(_MODEL_NAME)
|
| 23 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
_MODEL_NAME,
|
| 25 |
+
torch_dtype="auto",
|
| 26 |
+
device_map="auto"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Initialize TTS components once to avoid reloading
|
| 30 |
+
_SPEECH_PIPELINE = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
| 31 |
+
_EMBEDDINGS_DATASET = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 32 |
+
_DEFAULT_SPEAKER_EMBEDDING = torch.tensor(_EMBEDDINGS_DATASET[7306]["xvector"]).unsqueeze(0)
|
| 33 |
+
|
| 34 |
+
def generate_image_caption(input_image):
|
| 35 |
+
"""
|
| 36 |
+
Generate a textual description for an input image using a pretrained model.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
input_image (Union[PIL.Image.Image, str]): Image to process. Can be either:
|
| 40 |
+
- A PIL Image object
|
| 41 |
+
- A string containing a filesystem path to an image file
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
str: Generated caption text in natural language
|
| 45 |
+
|
| 46 |
+
Example:
|
| 47 |
+
>>> from PIL import Image
|
| 48 |
+
>>> img = Image.open("photo.jpg")
|
| 49 |
+
>>> caption = generate_image_caption(img)
|
| 50 |
+
>>> print(f"Caption: {caption}")
|
| 51 |
+
"""
|
| 52 |
+
# Process image through the captioning pipeline
|
| 53 |
+
inference_results = _image_caption_pipeline(input_image)
|
| 54 |
+
|
| 55 |
+
# Extract text from the first (and only) result dictionary
|
| 56 |
+
caption_text = inference_results[0]['generated_text']
|
| 57 |
+
|
| 58 |
+
return caption_text
|
| 59 |
+
|
| 60 |
+
def generate_story_content(system_prompt: str, user_prompt: str) -> str:
|
| 61 |
+
"""
|
| 62 |
+
Generates a children's story based on provided system and user prompts.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
system_prompt: Defines the assistant's role and writing constraints
|
| 66 |
+
user_prompt: Describes the story scenario and specific elements to include
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
Generated story text without any thinking process metadata
|
| 70 |
+
|
| 71 |
+
Raises:
|
| 72 |
+
RuntimeError: If text generation fails at any stage
|
| 73 |
+
|
| 74 |
+
Example:
|
| 75 |
+
>>> story = generate_story_content(
|
| 76 |
+
... "You are a helpful children's author...",
|
| 77 |
+
... "Kids playing with dogs in a sunny meadow..."
|
| 78 |
+
... )
|
| 79 |
+
"""
|
| 80 |
+
try:
|
| 81 |
+
# Prepare chat message structure
|
| 82 |
+
conversation_history = [
|
| 83 |
+
{"role": "system", "content": system_prompt},
|
| 84 |
+
{"role": "user", "content": user_prompt}
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Format input using model-specific template
|
| 88 |
+
formatted_input = _tokenizer.apply_chat_template(
|
| 89 |
+
conversation_history,
|
| 90 |
+
tokenize=False,
|
| 91 |
+
add_generation_prompt=True,
|
| 92 |
+
enable_thinking=False
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Tokenize and prepare model inputs
|
| 96 |
+
model_inputs = _tokenizer(
|
| 97 |
+
[formatted_input],
|
| 98 |
+
return_tensors="pt"
|
| 99 |
+
).to(_model.device)
|
| 100 |
+
|
| 101 |
+
# Generate text completion
|
| 102 |
+
generated_sequences = _model.generate(
|
| 103 |
+
**model_inputs,
|
| 104 |
+
max_new_tokens=1000
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Process and clean output
|
| 108 |
+
return _process_generated_output(
|
| 109 |
+
generated_sequences,
|
| 110 |
+
model_inputs.input_ids
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
except Exception as error:
|
| 114 |
+
raise RuntimeError(f"Story generation failed: {str(error)}") from error
|
| 115 |
+
|
| 116 |
+
def _process_generated_output(generated_sequences: list, input_ids: list) -> str:
|
| 117 |
+
"""
|
| 118 |
+
Processes raw model output to extract final content.
|
| 119 |
+
|
| 120 |
+
Args:
|
| 121 |
+
generated_sequences: Raw output sequences from model generation
|
| 122 |
+
input_ids: Original input token IDs used for generation
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
Cleaned final content text
|
| 126 |
+
"""
|
| 127 |
+
# Extract new tokens excluding original prompt
|
| 128 |
+
new_tokens = generated_sequences[0][len(input_ids[0]):].tolist()
|
| 129 |
+
|
| 130 |
+
# Find separation point between thinking and final content
|
| 131 |
+
separation_index = _find_thinking_separation(new_tokens)
|
| 132 |
+
|
| 133 |
+
# Decode and clean final content
|
| 134 |
+
return _tokenizer.decode(
|
| 135 |
+
new_tokens[separation_index:],
|
| 136 |
+
skip_special_tokens=True
|
| 137 |
+
).strip("\n")
|
| 138 |
+
|
| 139 |
+
def _find_thinking_separation(token_sequence: list) -> int:
|
| 140 |
+
"""
|
| 141 |
+
Locates the boundary between thinking process and final content.
|
| 142 |
+
|
| 143 |
+
Args:
|
| 144 |
+
token_sequence: List of generated token IDs
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
Index position marking the start of final content
|
| 148 |
+
"""
|
| 149 |
+
try:
|
| 150 |
+
# Search from end for separation token
|
| 151 |
+
reverse_position = token_sequence[::-1].index(_THINKING_TOKEN_ID)
|
| 152 |
+
return len(token_sequence) - reverse_position
|
| 153 |
+
except ValueError:
|
| 154 |
+
return 0 # Return start if token not found
|
| 155 |
+
|
| 156 |
+
def generate_audio_from_story(story_text: str, output_path: str = "output.wav") -> str:
|
| 157 |
+
"""
|
| 158 |
+
Convert text story to speech audio file using text-to-speech synthesis.
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
story_text: Input story text to synthesize
|
| 162 |
+
output_path: Path to save generated audio (default: 'output.wav')
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
Path to generated audio file
|
| 166 |
+
|
| 167 |
+
Raises:
|
| 168 |
+
ValueError: For empty/invalid input text
|
| 169 |
+
RuntimeError: If audio generation fails
|
| 170 |
+
|
| 171 |
+
Example:
|
| 172 |
+
>>> generate_audio_from_story("Children playing in the park", "story_audio.wav")
|
| 173 |
+
'story_audio.wav'
|
| 174 |
+
"""
|
| 175 |
+
# Validate input text
|
| 176 |
+
if not isinstance(story_text, str) or not story_text.strip():
|
| 177 |
+
raise ValueError("Input story text must be a non-empty string")
|
| 178 |
+
|
| 179 |
+
try:
|
| 180 |
+
# Generate speech with default speaker profile
|
| 181 |
+
speech_output = _SPEECH_PIPELINE(
|
| 182 |
+
story_text,
|
| 183 |
+
forward_params={"speaker_embeddings": _DEFAULT_SPEAKER_EMBEDDING}
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Save audio to WAV file
|
| 187 |
+
sf.write(
|
| 188 |
+
output_path,
|
| 189 |
+
speech_output["audio"],
|
| 190 |
+
samplerate=speech_output["sampling_rate"]
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
return output_path
|
| 194 |
+
|
| 195 |
+
except Exception as error:
|
| 196 |
+
raise RuntimeError(f"Audio synthesis failed: {str(error)}") from error
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# App title
|
| 200 |
+
st.title("Best Story Teller")
|
| 201 |
+
|
| 202 |
+
# Write some text
|
| 203 |
+
st.write("Upload a picture and start your journey of creativeness and imagination")
|
| 204 |
+
|
| 205 |
+
# File uploader for image and audio
|
| 206 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 207 |
+
uploaded_audio = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg"])
|
| 208 |
+
|
| 209 |
+
# Display image with spinner
|
| 210 |
+
if uploaded_image is not None:
|
| 211 |
+
with st.spinner("Loading image..."):
|
| 212 |
+
image = Image.open(uploaded_image)
|
| 213 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 214 |
+
with st.spinner("Captioning image..."):
|
| 215 |
+
caption_from_file = generate_image_caption(image)
|
| 216 |
+
with st.spinner("Adding some magics and imagination..."):
|
| 217 |
+
system_prompt = "You are a helpful kid story writter. You should directly generate a simple, educational and intresting story no more than 150 words."
|
| 218 |
+
user_prompt = caption_from_file
|
| 219 |
+
story = generate_story_content(system_prompt, user_prompt)
|
| 220 |
+
st.write(story)
|
| 221 |
+
with st.spinner("Finding the best voice actor"):
|
| 222 |
+
generated_audio = generate_audio_from_story(story,"childrens_story.wav")
|
| 223 |
+
st.audio(generated_audio)
|