Spaces:
Runtime error
Runtime error
Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import threading # to allow streaming response
|
| 2 |
+
import time # to pave the deliver of the message
|
| 3 |
+
|
| 4 |
+
import gradio # for the interface
|
| 5 |
+
import spaces # for GPU
|
| 6 |
+
import transformers # to load an LLM
|
| 7 |
+
import langchain_community.vectorstores # to load the publication vectorstore
|
| 8 |
+
import langchain_huggingface # for embeddings
|
| 9 |
+
|
| 10 |
+
# The greeting message
|
| 11 |
+
GREETING = (
|
| 12 |
+
"Howdy! "
|
| 13 |
+
"I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about additive manufacturing research. "
|
| 14 |
+
"I still make some mistakes though. "
|
| 15 |
+
"What can I tell you about today?"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Example queries
|
| 19 |
+
EXAMPLE_QUERIES = [
|
| 20 |
+
"Tell me about new research at the intersection of additive manufacturing and machine learning.",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
# The embedding model name
|
| 24 |
+
EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"
|
| 25 |
+
|
| 26 |
+
# The LLM model name
|
| 27 |
+
LLM_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 28 |
+
|
| 29 |
+
# The number of publications to retrieve
|
| 30 |
+
PUBLICATIONS_TO_RETRIEVE = 5
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def embedding(
|
| 34 |
+
model_name: str = "all-MiniLM-L12-v2",
|
| 35 |
+
device: str = "mps",
|
| 36 |
+
normalize_embeddings: bool = False,
|
| 37 |
+
) -> langchain_huggingface.HuggingFaceEmbeddings:
|
| 38 |
+
"""
|
| 39 |
+
Get the embedding function
|
| 40 |
+
:param model_name: The model name
|
| 41 |
+
:type model_name: str
|
| 42 |
+
:param device: The device to use
|
| 43 |
+
:type device: str
|
| 44 |
+
:param normalize_embeddings: Whether to normalize embeddings
|
| 45 |
+
:type normalize_embeddings: bool
|
| 46 |
+
|
| 47 |
+
:return: The embedding function
|
| 48 |
+
:rtype: langchain_huggingface.HuggingFaceEmbeddings
|
| 49 |
+
"""
|
| 50 |
+
return langchain_huggingface.HuggingFaceEmbeddings(
|
| 51 |
+
model_name=model_name,
|
| 52 |
+
model_kwargs={"device": device},
|
| 53 |
+
encode_kwargs={"normalize_embeddings": normalize_embeddings},
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def load_publication_vectorstore() -> langchain_community.vectorstores.FAISS:
|
| 58 |
+
"""
|
| 59 |
+
Load the publication vectorstore
|
| 60 |
+
:return: The publication vectorstore
|
| 61 |
+
:rtype: langchain_community.vectorstores.FAISS
|
| 62 |
+
"""
|
| 63 |
+
return langchain_community.vectorstores.FAISS.load_local(
|
| 64 |
+
folder_path="publication_vectorstore",
|
| 65 |
+
embeddings=embedding(),
|
| 66 |
+
allow_dangerous_deserialization=True,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
publication_vectorstore = load_publication_vectorstore()
|
| 71 |
+
|
| 72 |
+
# Create an LLM pipeline that we can send queries to
|
| 73 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
| 74 |
+
LLM_MODEL_NAME, trust_remote_code=True
|
| 75 |
+
)
|
| 76 |
+
streamer = transformers.TextIteratorStreamer(
|
| 77 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 78 |
+
)
|
| 79 |
+
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
|
| 80 |
+
LLM_MODEL_NAME, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def preprocess(query: str, k: int) -> tuple[str, str]:
|
| 85 |
+
"""
|
| 86 |
+
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
|
| 87 |
+
Args:
|
| 88 |
+
query (str): The user's query
|
| 89 |
+
k (int): The number of results to return
|
| 90 |
+
Returns:
|
| 91 |
+
tuple[str, str]: A tuple containing the prompt and references
|
| 92 |
+
"""
|
| 93 |
+
documents = publication_vectorstore.search(
|
| 94 |
+
query, k=PUBLICATIONS_TO_RETRIEVE, search_type="similarity"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
prompt = (
|
| 98 |
+
"You are an AI assistant who delights in helping people learn about research from the Design Research Collective, which is a research lab at Carnegie Mellon University led by Professor Chris McComb. "
|
| 99 |
+
"Your main task is to provide a concise ANSWER to the USER_QUERY that includes as many of the RESEARCH_ABSTRACTS as possible. "
|
| 100 |
+
"The RESEARCH_ABSTRACTS are provided in the `.bibtex` format. Your ANSWER should contain citations to the RESEARCH_ABSTRACTS using (AUTHOR, YEAR) format. "
|
| 101 |
+
"DO NOT list references at the end of the answer.\n\n"
|
| 102 |
+
"===== RESEARCH_EXCERPTS =====:\n{{EXCERPTS_GO_HERE}}\n\n"
|
| 103 |
+
"===== USER_QUERY =====:\n{{QUERY_GOES_HERE}}\n\n"
|
| 104 |
+
"===== ANSWER =====:\n"
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
research_excerpts = [
|
| 108 |
+
'"... ' + document.page_content + '..."' for document in documents
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
prompt = prompt.replace("{{EXCERPTS_GO_HERE}}", "\n\n".join(research_excerpts))
|
| 112 |
+
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
|
| 113 |
+
|
| 114 |
+
print(prompt)
|
| 115 |
+
|
| 116 |
+
return prompt, ""
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@spaces.GPU
|
| 120 |
+
def reply(message: str, history: list[str]) -> str:
|
| 121 |
+
"""
|
| 122 |
+
This function is responsible for crafting a response
|
| 123 |
+
Args:
|
| 124 |
+
message (str): The user's message
|
| 125 |
+
history (list[str]): The conversation history
|
| 126 |
+
Returns:
|
| 127 |
+
str: The AI's response
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
# Apply preprocessing
|
| 131 |
+
message, bypass = preprocess(message, PUBLICATIONS_TO_RETRIEVE)
|
| 132 |
+
|
| 133 |
+
# This is some handling that is applied to the history variable to put it in a good format
|
| 134 |
+
history_transformer_format = [
|
| 135 |
+
{"role": role, "content": message_pair[idx]}
|
| 136 |
+
for message_pair in history
|
| 137 |
+
for idx, role in enumerate(["user", "assistant"])
|
| 138 |
+
if message_pair[idx] is not None
|
| 139 |
+
] + [{"role": "user", "content": message}]
|
| 140 |
+
|
| 141 |
+
# Stream a response from pipe
|
| 142 |
+
text = tokenizer.apply_chat_template(
|
| 143 |
+
history_transformer_format, tokenize=False, add_generation_prompt=True
|
| 144 |
+
)
|
| 145 |
+
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
|
| 146 |
+
|
| 147 |
+
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
|
| 148 |
+
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
|
| 149 |
+
t.start()
|
| 150 |
+
|
| 151 |
+
partial_message = ""
|
| 152 |
+
for new_token in streamer:
|
| 153 |
+
if new_token != "<":
|
| 154 |
+
partial_message += new_token
|
| 155 |
+
time.sleep(0.01)
|
| 156 |
+
yield partial_message
|
| 157 |
+
|
| 158 |
+
yield partial_message + "\n\n" + bypass
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# Create and run the gradio interface
|
| 162 |
+
gradio.ChatInterface(
|
| 163 |
+
reply,
|
| 164 |
+
examples=EXAMPLE_QUERIES,
|
| 165 |
+
chatbot=gradio.Chatbot(
|
| 166 |
+
show_label=False,
|
| 167 |
+
show_share_button=False,
|
| 168 |
+
show_copy_button=False,
|
| 169 |
+
value=[[None, GREETING]],
|
| 170 |
+
avatar_images=(
|
| 171 |
+
"https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
|
| 172 |
+
"https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
|
| 173 |
+
),
|
| 174 |
+
height="60vh",
|
| 175 |
+
bubble_full_width=False,
|
| 176 |
+
),
|
| 177 |
+
retry_btn=None,
|
| 178 |
+
undo_btn=None,
|
| 179 |
+
clear_btn=None,
|
| 180 |
+
theme=gradio.themes.Default(font=[gradio.themes.GoogleFont("Zilla Slab")]),
|
| 181 |
+
).launch(debug=True)
|