Spaces:
Running
Running
| import os | |
| import torch | |
| import modelscope | |
| import huggingface_hub | |
| import numpy as np | |
| from torchvision.transforms import Compose, Resize, Normalize | |
| EN_US = os.getenv("LANG") != "zh_CN.UTF-8" | |
| ZH2EN = { | |
| "上传录音": "Upload a recording", | |
| "选择模型": "Select a model", | |
| "状态栏": "Status", | |
| "音频文件名": "Audio filename", | |
| "古筝演奏技法逐帧检测": "Frame-level guzheng playing technique detection", | |
| "建议录音时长不要过长": "It is suggested that the recording time should not be too long", | |
| "引用": "Cite", | |
| "颤音": "Vibrato", | |
| "拨弦": "Plucks", | |
| "上滑音": "Upward Portamento", | |
| "下滑音": "Downward Portamento", | |
| "花指\刮奏\连抹\连托": "Glissando", | |
| "摇指": "Tremolo", | |
| "点音": "Point Note", | |
| "帧数": "Frame", | |
| "技法": "Tech", | |
| } | |
| MODEL_DIR = ( | |
| huggingface_hub.snapshot_download( | |
| "ccmusic-database/Guzheng_Tech99", | |
| cache_dir="./__pycache__", | |
| ) | |
| if EN_US | |
| else modelscope.snapshot_download( | |
| "ccmusic-database/Guzheng_Tech99", | |
| cache_dir="./__pycache__", | |
| ) | |
| ) | |
| def _L(zh_txt: str): | |
| return ZH2EN[zh_txt] if EN_US else zh_txt | |
| TRANSLATE = { | |
| "chanyin": _L("颤音"), # Vibrato | |
| "boxian": _L("拨弦"), # Plucks | |
| "shanghua": _L("上滑音"), # Upward Portamento | |
| "xiahua": _L("下滑音"), # Downward Portamento | |
| "huazhi/guazou/lianmo/liantuo": _L("花指\刮奏\连抹\连托"), # Glissando | |
| "yaozhi": _L("摇指"), # Tremolo | |
| "dianyin": _L("点音"), # Point Note | |
| } | |
| CLASSES = list(TRANSLATE.keys()) | |
| TEMP_DIR = "./__pycache__/tmp" | |
| SAMPLE_RATE = 44100 | |
| HOP_LENGTH = 512 | |
| TIME_LENGTH = 3 | |
| def toCUDA(x): | |
| if hasattr(x, "cuda"): | |
| if torch.cuda.is_available(): | |
| return x.cuda() | |
| return x | |
| def find_files(folder_path=f"{MODEL_DIR}/examples", ext=".flac"): | |
| audio_files = [] | |
| for root, _, files in os.walk(folder_path): | |
| for file in files: | |
| if file.endswith(ext): | |
| file_path = os.path.join(root, file) | |
| audio_files.append(file_path) | |
| return audio_files | |
| def get_modelist(model_dir=MODEL_DIR, assign_model=""): | |
| pt_files = [] | |
| for _, _, files in os.walk(model_dir): | |
| for file in files: | |
| if file.endswith(".pt"): | |
| model = os.path.basename(file)[:-3] | |
| if assign_model and assign_model.lower() in model: | |
| pt_files.insert(0, model) | |
| else: | |
| pt_files.append(model) | |
| return pt_files | |
| def embed(input: list, img_size: int): | |
| compose = Compose( | |
| [ | |
| Resize([img_size, img_size]), | |
| Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
| ] | |
| ) | |
| inputs = [] | |
| for x in input: | |
| x = np.array(x).transpose(2, 0, 1) | |
| x = torch.from_numpy(x).repeat(3, 1, 1) | |
| x = torch.tensor(np.array([compose(x).float()])) | |
| inputs.append(toCUDA(x)) | |
| return inputs | |