Spaces:
Running
Running
admin
commited on
Commit
·
d613312
1
Parent(s):
adac6eb
fix cuda err
Browse files
model.py
CHANGED
|
@@ -88,7 +88,7 @@ class EvalNet:
|
|
| 88 |
|
| 89 |
def _create_classifier(self):
|
| 90 |
original_T_size = self.ori_T
|
| 91 |
-
|
| 92 |
nn.AdaptiveAvgPool2d((1, None)), # F -> 1
|
| 93 |
nn.ConvTranspose2d(
|
| 94 |
self.out_channel_before_classifier,
|
|
@@ -123,8 +123,6 @@ class EvalNet:
|
|
| 123 |
nn.Conv2d(32, self.cls_num, kernel_size=(1, 1)),
|
| 124 |
)
|
| 125 |
|
| 126 |
-
return upsample_module
|
| 127 |
-
|
| 128 |
def _set_channel_outsize(self): #### get the output size before classifier ####
|
| 129 |
conv2d_out_ch = []
|
| 130 |
for name, module in self.model.named_modules():
|
|
@@ -245,7 +243,7 @@ class t_EvalNet:
|
|
| 245 |
def _create_classifier(self):
|
| 246 |
original_T_size = self.ori_T
|
| 247 |
self.avgpool = nn.AdaptiveAvgPool2d((1, None)) # F -> 1
|
| 248 |
-
|
| 249 |
nn.ConvTranspose2d(
|
| 250 |
self.hidden_dim, 256, kernel_size=(1, 4), stride=(1, 2), padding=(0, 1)
|
| 251 |
),
|
|
@@ -275,8 +273,6 @@ class t_EvalNet:
|
|
| 275 |
nn.Conv2d(32, self.cls_num, kernel_size=(1, 1)),
|
| 276 |
)
|
| 277 |
|
| 278 |
-
return upsample_module
|
| 279 |
-
|
| 280 |
def _set_classifier(self): #### set custom classifier ####
|
| 281 |
if self.type == "vit" or self.type == "swin_transformer":
|
| 282 |
self.classifier = self._create_classifier()
|
|
@@ -287,10 +283,11 @@ class t_EvalNet:
|
|
| 287 |
def forward(self, x: torch.Tensor):
|
| 288 |
if torch.cuda.is_available():
|
| 289 |
x = x.cuda()
|
|
|
|
| 290 |
|
| 291 |
if self.type == "vit":
|
| 292 |
x = self.model._process_input(x)
|
| 293 |
-
batch_class_token = self.class_token.expand(x.size(0), -1, -1)
|
| 294 |
x = torch.cat([batch_class_token, x], dim=1)
|
| 295 |
x = self.model.encoder(x)
|
| 296 |
x = x[:, 1:].permute(0, 2, 1)
|
|
|
|
| 88 |
|
| 89 |
def _create_classifier(self):
|
| 90 |
original_T_size = self.ori_T
|
| 91 |
+
return nn.Sequential(
|
| 92 |
nn.AdaptiveAvgPool2d((1, None)), # F -> 1
|
| 93 |
nn.ConvTranspose2d(
|
| 94 |
self.out_channel_before_classifier,
|
|
|
|
| 123 |
nn.Conv2d(32, self.cls_num, kernel_size=(1, 1)),
|
| 124 |
)
|
| 125 |
|
|
|
|
|
|
|
| 126 |
def _set_channel_outsize(self): #### get the output size before classifier ####
|
| 127 |
conv2d_out_ch = []
|
| 128 |
for name, module in self.model.named_modules():
|
|
|
|
| 243 |
def _create_classifier(self):
|
| 244 |
original_T_size = self.ori_T
|
| 245 |
self.avgpool = nn.AdaptiveAvgPool2d((1, None)) # F -> 1
|
| 246 |
+
return nn.Sequential( # nn.AdaptiveAvgPool2d((1, None)), # F -> 1
|
| 247 |
nn.ConvTranspose2d(
|
| 248 |
self.hidden_dim, 256, kernel_size=(1, 4), stride=(1, 2), padding=(0, 1)
|
| 249 |
),
|
|
|
|
| 273 |
nn.Conv2d(32, self.cls_num, kernel_size=(1, 1)),
|
| 274 |
)
|
| 275 |
|
|
|
|
|
|
|
| 276 |
def _set_classifier(self): #### set custom classifier ####
|
| 277 |
if self.type == "vit" or self.type == "swin_transformer":
|
| 278 |
self.classifier = self._create_classifier()
|
|
|
|
| 283 |
def forward(self, x: torch.Tensor):
|
| 284 |
if torch.cuda.is_available():
|
| 285 |
x = x.cuda()
|
| 286 |
+
self.class_token = self.class_token.cuda()
|
| 287 |
|
| 288 |
if self.type == "vit":
|
| 289 |
x = self.model._process_input(x)
|
| 290 |
+
batch_class_token = self.class_token.expand(x.size(0), -1, -1)
|
| 291 |
x = torch.cat([batch_class_token, x], dim=1)
|
| 292 |
x = self.model.encoder(x)
|
| 293 |
x = x[:, 1:].permute(0, 2, 1)
|