Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,6 +13,10 @@ with open("embeddings_1.pkl", "rb") as fIn:
|
|
| 13 |
stored_data = pickle.load(fIn)
|
| 14 |
stored_embeddings = stored_data["embeddings"]
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def validate_input(input_string):
|
| 17 |
# Regular expression pattern to match letters and numbers, or letters only
|
| 18 |
pattern = r'^[a-zA-Z0-9]+$|^[a-zA-Z]+$'
|
|
@@ -24,7 +28,17 @@ def validate_input(input_string):
|
|
| 24 |
return False
|
| 25 |
|
| 26 |
# Define the function for mapping code
|
| 27 |
-
def mapping_code(user_input):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
emb1 = model.encode(user_input.lower())
|
| 30 |
similarities = []
|
|
@@ -33,7 +47,7 @@ def mapping_code(user_input):
|
|
| 33 |
similarities.append(similarity)
|
| 34 |
|
| 35 |
# Filter results with similarity scores above 0.70
|
| 36 |
-
result = [(code, desc, sim) for (code, desc, sim) in zip(
|
| 37 |
|
| 38 |
# Sort results by similarity scores
|
| 39 |
result.sort(key=lambda x: x[2], reverse=True)
|
|
@@ -55,29 +69,34 @@ def mapping_code(user_input):
|
|
| 55 |
import streamlit as st
|
| 56 |
|
| 57 |
def main():
|
| 58 |
-
st.title("CPT
|
| 59 |
-
st.markdown("<font color='blue'>**💡 Please enter the input CPT description with specific available details in correct spelling for best results.**</font>", unsafe_allow_html=True)
|
| 60 |
|
| 61 |
-
|
|
|
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Input text box for user input
|
| 66 |
-
user_input = st.text_input(
|
| 67 |
|
| 68 |
# Button to trigger mapping
|
| 69 |
if st.button("Map"):
|
| 70 |
if not user_input.strip(): # Check if input is empty or contains only whitespace
|
| 71 |
st.error("Input box cannot be empty.")
|
| 72 |
elif validate_input(user_input):
|
| 73 |
-
st.warning("Please input correct description
|
| 74 |
else:
|
| 75 |
-
st.write("Please wait for a moment
|
| 76 |
# Call backend function to get mapping results
|
| 77 |
try:
|
| 78 |
-
mapping_results = mapping_code(user_input)
|
| 79 |
# Display top 5 similar sentences
|
| 80 |
-
st.write("Top 5 similar
|
| 81 |
for i, result in enumerate(mapping_results, 1):
|
| 82 |
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}")
|
| 83 |
except ValueError as e:
|
|
|
|
| 13 |
stored_data = pickle.load(fIn)
|
| 14 |
stored_embeddings = stored_data["embeddings"]
|
| 15 |
|
| 16 |
+
with open("embeddings_2.pkl", "rb") as fIn:
|
| 17 |
+
stored_data_cpt = pickle.load(fIn)
|
| 18 |
+
stored_embeddings_cpt = stored_data_cpt["embeddings"]
|
| 19 |
+
|
| 20 |
def validate_input(input_string):
|
| 21 |
# Regular expression pattern to match letters and numbers, or letters only
|
| 22 |
pattern = r'^[a-zA-Z0-9]+$|^[a-zA-Z]+$'
|
|
|
|
| 28 |
return False
|
| 29 |
|
| 30 |
# Define the function for mapping code
|
| 31 |
+
def mapping_code(user_input, mode):
|
| 32 |
+
if mode == "CPT_to_SBS":
|
| 33 |
+
stored_embeddings = stored_embeddings_cpt
|
| 34 |
+
stored_data = stored_data_cpt
|
| 35 |
+
code_column = stored_data["CPT_CODE"]
|
| 36 |
+
description_column = stored_data["FULL_DESCRIPTION"]
|
| 37 |
+
elif mode == "SBS_to_CPT":
|
| 38 |
+
stored_embeddings = stored_embeddings_sbs
|
| 39 |
+
stored_data = stored_data_sbs
|
| 40 |
+
code_column = stored_data["SBS_code"]
|
| 41 |
+
description_column = stored_data["Description"]
|
| 42 |
|
| 43 |
emb1 = model.encode(user_input.lower())
|
| 44 |
similarities = []
|
|
|
|
| 47 |
similarities.append(similarity)
|
| 48 |
|
| 49 |
# Filter results with similarity scores above 0.70
|
| 50 |
+
result = [(code, desc, sim) for (code, desc, sim) in zip(code_column, description_column, similarities)]
|
| 51 |
|
| 52 |
# Sort results by similarity scores
|
| 53 |
result.sort(key=lambda x: x[2], reverse=True)
|
|
|
|
| 69 |
import streamlit as st
|
| 70 |
|
| 71 |
def main():
|
| 72 |
+
st.title("CPT-SBS Code Mapping")
|
|
|
|
| 73 |
|
| 74 |
+
# Dropdown for user to choose mapping direction
|
| 75 |
+
mapping_mode = st.selectbox("Choose mapping direction:", ("CPT description to SBS code", "SBS description to CPT code"))
|
| 76 |
|
| 77 |
+
if mapping_mode == "CPT description to SBS code":
|
| 78 |
+
user_input_label = "Enter CPT description:"
|
| 79 |
+
mode = "CPT_to_SBS"
|
| 80 |
+
else:
|
| 81 |
+
user_input_label = "Enter SBS description:"
|
| 82 |
+
mode = "SBS_to_CPT"
|
| 83 |
|
| 84 |
# Input text box for user input
|
| 85 |
+
user_input = st.text_input(user_input_label, placeholder="Enter description here...")
|
| 86 |
|
| 87 |
# Button to trigger mapping
|
| 88 |
if st.button("Map"):
|
| 89 |
if not user_input.strip(): # Check if input is empty or contains only whitespace
|
| 90 |
st.error("Input box cannot be empty.")
|
| 91 |
elif validate_input(user_input):
|
| 92 |
+
st.warning("Please input correct description.")
|
| 93 |
else:
|
| 94 |
+
st.write("Please wait for a moment ...")
|
| 95 |
# Call backend function to get mapping results
|
| 96 |
try:
|
| 97 |
+
mapping_results = mapping_code(user_input, mode)
|
| 98 |
# Display top 5 similar sentences
|
| 99 |
+
st.write("Top 5 similar entries:")
|
| 100 |
for i, result in enumerate(mapping_results, 1):
|
| 101 |
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}")
|
| 102 |
except ValueError as e:
|