Spaces:
Running
Running
| import asyncio | |
| import base64 | |
| import time | |
| import uuid | |
| import shutil | |
| from concurrent.futures import ThreadPoolExecutor | |
| from pathlib import Path | |
| from typing import List, Optional | |
| import subprocess | |
| import ebooklib | |
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| from ebooklib import epub | |
| from bs4 import BeautifulSoup | |
| from auralis import TTS, TTSRequest, TTSOutput, AudioPreprocessingConfig, setup_logger | |
| logger = setup_logger(__file__) | |
| tts = TTS() | |
| model_path = "AstraMindAI/xttsv2" # change this if you have a different model | |
| gpt_model = "AstraMindAI/xtts2-gpt" | |
| try: | |
| tts = tts.from_pretrained(model_path, gpt_model=gpt_model) | |
| logger.info(f"Successfully loaded model {model_path}") | |
| except Exception as e: | |
| logger.error(f"Failed to load model: {e}. Ensure that the model exists at {model_path}") | |
| # Create a temporary directory to store short-named files | |
| temp_dir = Path("/tmp/auralis") | |
| temp_dir.mkdir(exist_ok=True) | |
| def convert_ebook_to_txt(input_path: str) -> str: | |
| """ | |
| Convert any ebook format to txt using calibre's ebook-convert | |
| Returns the path to the converted txt file | |
| """ | |
| output_path = str(temp_dir / f"{uuid.uuid4().hex[:8]}.txt") | |
| try: | |
| subprocess.run(['ebook-convert', input_path, output_path], | |
| check=True, capture_output=True, text=True) | |
| return output_path | |
| except subprocess.CalledProcessError as e: | |
| logger.error(f"Conversion failed: {e.stderr}") | |
| raise RuntimeError(f"Failed to convert ebook: {e.stderr}") | |
| def shorten_filename(original_path: str) -> str: | |
| """Copies the given file to a temporary directory with a shorter, random filename.""" | |
| ext = Path(original_path).suffix | |
| short_name = "file_" + uuid.uuid4().hex[:8] + ext | |
| short_path = temp_dir / short_name | |
| shutil.copyfile(original_path, short_path) | |
| return str(short_path) | |
| def text_from_file(file_path: str) -> str: | |
| """Read text from a file, converting if necessary.""" | |
| file_ext = Path(file_path).suffix.lower() | |
| if file_ext in ['.txt']: | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| return f.read() | |
| else: | |
| # Convert other formats to txt first | |
| txt_path = convert_ebook_to_txt(file_path) | |
| with open(txt_path, 'r', encoding='utf-8') as f: | |
| return f.read() | |
| def clone_voice(audio_path: str): | |
| """Clone a voice from an audio path.""" | |
| audio_short_path = shorten_filename(audio_path) | |
| with open(audio_short_path, "rb") as f: | |
| audio_data = base64.b64encode(f.read()).decode('utf-8') | |
| return audio_data | |
| def process_text_and_generate(input_text, ref_audio_files, speed, enhance_speech, temperature, top_p, top_k, repetition_penalty, language, *args): | |
| """Process text and generate audio.""" | |
| log_messages = "" | |
| if not ref_audio_files: | |
| log_messages += "Please provide at least one reference audio!\n" | |
| return None, log_messages | |
| # clone voices from all file paths (shorten them) | |
| base64_voices = ref_audio_files[:5] | |
| request = TTSRequest( | |
| text=input_text, | |
| speaker_files=base64_voices, | |
| stream=False, | |
| enhance_speech=enhance_speech, | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| repetition_penalty=repetition_penalty, | |
| language=language, | |
| ) | |
| try: | |
| with torch.no_grad(): | |
| output = tts.generate_speech(request) | |
| if output: | |
| if speed != 1: | |
| output.change_speed(speed) | |
| log_messages += f"✅ Successfully Generated audio\n" | |
| return (output.sample_rate, output.array), log_messages | |
| else: | |
| log_messages += "❌ No output was generated. Check that the model was correctly loaded\n" | |
| return None, log_messages | |
| except Exception as e: | |
| logger.error(f"Error: {e}") | |
| log_messages += f"❌ An Error occured: {e}\n" | |
| return None, log_messages | |
| def build_gradio_ui(): | |
| """Builds and launches the Gradio UI for Auralis.""" | |
| with gr.Blocks(title="Auralis TTS Demo", theme="soft") as ui: | |
| gr.Markdown( | |
| """ | |
| # Auralis Text-to-Speech Demo 🌌 | |
| Convert text or ebooks to speech with advanced voice cloning and enhancement. | |
| """ | |
| ) | |
| with gr.Tab("File to Speech"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input = gr.File( | |
| label="Upload Book/Text File", | |
| file_types=[ | |
| ".txt", ".epub", ".mobi", ".azw3", ".fb2", | |
| ".htmlz", ".lit", ".pdb", ".pdf", ".rtf" | |
| ] | |
| ) | |
| ref_audio_files = gr.Files( | |
| label="Reference Audio Files", | |
| file_types=["audio"] | |
| ) | |
| with gr.Accordion("Advanced settings", open=False): | |
| speed = gr.Slider( | |
| label="Playback speed", | |
| minimum=0.5, | |
| maximum=2.0, | |
| value=1.0, | |
| step=0.1 | |
| ) | |
| enhance_speech = gr.Checkbox( | |
| label="Enhance Reference Speech", | |
| value=False | |
| ) | |
| temperature = gr.Slider( | |
| label="Temperature", | |
| minimum=0.5, | |
| maximum=1.0, | |
| value=0.75, | |
| step=0.05 | |
| ) | |
| top_p = gr.Slider( | |
| label="Top P", | |
| minimum=0.5, | |
| maximum=1.0, | |
| value=0.85, | |
| step=0.05 | |
| ) | |
| top_k = gr.Slider( | |
| label="Top K", | |
| minimum=0, | |
| maximum=100, | |
| value=50, | |
| step=10 | |
| ) | |
| repetition_penalty = gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=10.0, | |
| value=5.0, | |
| step=0.5 | |
| ) | |
| language = gr.Dropdown( | |
| label="Target Language", | |
| choices=[ | |
| "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", | |
| "nl", "cs", "ar", "zh-cn", "hu", "ko", "ja", "hi", "auto", | |
| ], | |
| value="auto" | |
| ) | |
| generate_button = gr.Button("Generate Speech") | |
| with gr.Column(): | |
| audio_output = gr.Audio(label="Generated Audio") | |
| log_output = gr.Text(label="Log Output") | |
| def process_file_and_generate( | |
| file_input, ref_audio_files, speed, enhance_speech, | |
| temperature, top_p, top_k, repetition_penalty, language | |
| ): | |
| if not file_input: | |
| return None, "Please provide an input file!" | |
| try: | |
| # Convert input file to text | |
| input_text = text_from_file(file_input.name) | |
| return process_text_and_generate( | |
| input_text, ref_audio_files, speed, enhance_speech, | |
| temperature, top_p, top_k, repetition_penalty, language | |
| ) | |
| except Exception as e: | |
| logger.error(f"Error processing file: {e}") | |
| return None, f"Error processing file: {str(e)}" | |
| generate_button.click( | |
| process_file_and_generate, | |
| inputs=[ | |
| file_input, ref_audio_files, speed, enhance_speech, | |
| temperature, top_p, top_k, repetition_penalty, language | |
| ], | |
| outputs=[audio_output, log_output], | |
| ) | |
| with gr.Tab("Clone With Microphone"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input_mic = gr.File( | |
| label="Upload Book/Text File", | |
| file_types=[ | |
| ".txt", ".epub", ".mobi", ".azw3", ".fb2", | |
| ".htmlz", ".lit", ".pdb", ".pdf", ".rtf" | |
| ] | |
| ) | |
| mic_ref_audio = gr.Audio( | |
| label="Record Reference Audio", | |
| sources=["microphone"] | |
| ) | |
| with gr.Accordion("Advanced settings", open=False): | |
| speed_mic = gr.Slider( | |
| label="Playback speed", | |
| minimum=0.5, | |
| maximum=2.0, | |
| value=1.0, | |
| step=0.1 | |
| ) | |
| enhance_speech_mic = gr.Checkbox( | |
| label="Enhance Reference Speech", | |
| value=True | |
| ) | |
| temperature_mic = gr.Slider( | |
| label="Temperature", | |
| minimum=0.5, | |
| maximum=1.0, | |
| value=0.75, | |
| step=0.05 | |
| ) | |
| top_p_mic = gr.Slider( | |
| label="Top P", | |
| minimum=0.5, | |
| maximum=1.0, | |
| value=0.85, | |
| step=0.05 | |
| ) | |
| top_k_mic = gr.Slider( | |
| label="Top K", | |
| minimum=0, | |
| maximum=100, | |
| value=50, | |
| step=10 | |
| ) | |
| repetition_penalty_mic = gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=10.0, | |
| value=5.0, | |
| step=0.5 | |
| ) | |
| language_mic = gr.Dropdown( | |
| label="Target Language", | |
| choices=[ | |
| "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", | |
| "nl", "cs", "ar", "zh-cn", "hu", "ko", "ja", "hi", "auto", | |
| ], | |
| value="auto" | |
| ) | |
| generate_button_mic = gr.Button("Generate Speech") | |
| with gr.Column(): | |
| audio_output_mic = gr.Audio(label="Generated Audio") | |
| log_output_mic = gr.Text(label="Log Output") | |
| def process_mic_and_generate( | |
| file_input, mic_ref_audio, speed_mic, enhance_speech_mic, | |
| temperature_mic, top_p_mic, top_k_mic, repetition_penalty_mic, language_mic | |
| ): | |
| if not mic_ref_audio: | |
| return None, "Please record an audio!" | |
| if not file_input: | |
| return None, "Please provide an input file!" | |
| try: | |
| # Convert input file to text | |
| input_text = text_from_file(file_input.name) | |
| # Save microphone audio | |
| data = str(time.time()).encode("utf-8") | |
| hash = hashlib.sha1(data).hexdigest()[:10] | |
| output_path = temp_dir / (f"mic_{hash}.wav") | |
| torch_audio = torch.from_numpy(mic_ref_audio[1].astype(float)) | |
| torchaudio.save( | |
| str(output_path), | |
| torch_audio.unsqueeze(0), | |
| mic_ref_audio[0] | |
| ) | |
| return process_text_and_generate( | |
| input_text, [Path(output_path)], speed_mic, | |
| enhance_speech_mic, temperature_mic, top_p_mic, | |
| top_k_mic, repetition_penalty_mic, language_mic | |
| ) | |
| except Exception as e: | |
| logger.error(f"Error processing input: {e}") | |
| return None, f"Error processing input: {str(e)}" | |
| generate_button_mic.click( | |
| process_mic_and_generate, | |
| inputs=[ | |
| file_input_mic, mic_ref_audio, speed_mic, | |
| enhance_speech_mic, temperature_mic, top_p_mic, | |
| top_k_mic, repetition_penalty_mic, language_mic | |
| ], | |
| outputs=[audio_output_mic, log_output_mic], | |
| ) | |
| return ui | |
| if __name__ == "__main__": | |
| ui = build_gradio_ui() | |
| ui.launch(debug=True) |