Spaces:
Running
Running
App de pronóstico con Chronos-Bolt (UI+API)
Browse files- app.py +104 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
# 🔽 Import del pipeline de Chronos (lib 'chronos-forecasting')
|
| 8 |
+
from chronos import ChronosPipeline
|
| 9 |
+
|
| 10 |
+
# Modelo recomendado para CPU free tier (rápido y estable)
|
| 11 |
+
MODEL_ID = "amazon/chronos-bolt-base"
|
| 12 |
+
|
| 13 |
+
# Cargar el modelo UNA sola vez
|
| 14 |
+
PIPELINE = ChronosPipeline.from_pretrained(
|
| 15 |
+
MODEL_ID,
|
| 16 |
+
device_map="auto",
|
| 17 |
+
torch_dtype=torch.float32, # en CPU va bien
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def _prepare_series(df: pd.DataFrame, freq: str | None):
|
| 21 |
+
"""
|
| 22 |
+
Espera columnas: date,value
|
| 23 |
+
- Ordena por fecha
|
| 24 |
+
- Infere o aplica frecuencia
|
| 25 |
+
- Interpola huecos
|
| 26 |
+
"""
|
| 27 |
+
if "date" not in df.columns or "value" not in df.columns:
|
| 28 |
+
raise gr.Error("El CSV debe tener columnas: date,value")
|
| 29 |
+
|
| 30 |
+
df = df.copy()
|
| 31 |
+
df["date"] = pd.to_datetime(df["date"])
|
| 32 |
+
df = df.sort_values("date")
|
| 33 |
+
|
| 34 |
+
if freq and freq.strip():
|
| 35 |
+
df = df.set_index("date").asfreq(freq).reset_index()
|
| 36 |
+
else:
|
| 37 |
+
inferred = pd.infer_freq(df["date"])
|
| 38 |
+
if inferred is None:
|
| 39 |
+
# fallback: tamaño de paso por mediana en días
|
| 40 |
+
step = max(int((df["date"].diff().median() / pd.Timedelta(days=1)) or 1), 1)
|
| 41 |
+
df = df.set_index("date").asfreq(f"{step}D").reset_index()
|
| 42 |
+
else:
|
| 43 |
+
df = df.set_index("date").asfreq(inferred).reset_index()
|
| 44 |
+
|
| 45 |
+
# Rellenar faltantes
|
| 46 |
+
df["value"] = pd.to_numeric(df["value"], errors="coerce")
|
| 47 |
+
df["value"] = df["value"].interpolate("linear").bfill().ffill()
|
| 48 |
+
return df
|
| 49 |
+
|
| 50 |
+
def forecast_fn(file, horizon: int = 12, freq: str = "MS"):
|
| 51 |
+
if file is None:
|
| 52 |
+
raise gr.Error("Sube un CSV con columnas: date,value")
|
| 53 |
+
df = pd.read_csv(file.name)
|
| 54 |
+
df = _prepare_series(df, freq.strip() or None)
|
| 55 |
+
|
| 56 |
+
# Serie a tensor
|
| 57 |
+
y = torch.tensor(df["value"].values, dtype=torch.float32)
|
| 58 |
+
|
| 59 |
+
# Predicción probabilística (múltiples trayectorias -> cuantiles)
|
| 60 |
+
samples = PIPELINE.predict(y, prediction_length=horizon, num_samples=200) # [1, N, H]
|
| 61 |
+
samples = samples[0].numpy() # [N, H]
|
| 62 |
+
p10, p50, p90 = np.quantile(samples, [0.10, 0.50, 0.90], axis=0)
|
| 63 |
+
|
| 64 |
+
# Fechas futuras
|
| 65 |
+
inferred = pd.infer_freq(df["date"])
|
| 66 |
+
if inferred is None:
|
| 67 |
+
step = max(int((df["date"].diff().median() / pd.Timedelta(days=1)) or 1), 1)
|
| 68 |
+
future_index = pd.date_range(df["date"].iloc[-1], periods=horizon+1, freq=f"{step}D")[1:]
|
| 69 |
+
else:
|
| 70 |
+
future_index = pd.date_range(df["date"].iloc[-1], periods=horizon+1, freq=inferred)[1:]
|
| 71 |
+
|
| 72 |
+
out = pd.DataFrame({
|
| 73 |
+
"date": future_index,
|
| 74 |
+
"p10": np.round(p10, 4),
|
| 75 |
+
"p50": np.round(p50, 4),
|
| 76 |
+
"p90": np.round(p90, 4),
|
| 77 |
+
})
|
| 78 |
+
|
| 79 |
+
# Gráfica
|
| 80 |
+
fig = plt.figure(figsize=(8, 4))
|
| 81 |
+
plt.plot(df["date"], df["value"], label="Histórico")
|
| 82 |
+
plt.plot(out["date"], out["p50"], label="Pronóstico (P50)")
|
| 83 |
+
plt.fill_between(out["date"], out["p10"], out["p90"], alpha=0.3, label="Banda P10–P90")
|
| 84 |
+
plt.title("Pronóstico con Chronos-Bolt (P10 / P50 / P90)")
|
| 85 |
+
plt.xlabel("Fecha"); plt.ylabel("Valor")
|
| 86 |
+
plt.legend()
|
| 87 |
+
|
| 88 |
+
return out, fig
|
| 89 |
+
|
| 90 |
+
with gr.Blocks(title="Pronóstico de Demanda (Chronos-Bolt)") as demo:
|
| 91 |
+
gr.Markdown("## Análisis predictivo de mercado (Hugging Face + Chronos-Bolt)\nSube un CSV con columnas **date,value**. Elige horizonte y frecuencia.")
|
| 92 |
+
with gr.Row():
|
| 93 |
+
file = gr.File(label="CSV: date,value", file_types=[".csv"])
|
| 94 |
+
horizon = gr.Slider(1, 36, value=12, step=1, label="Horizonte (pasos)")
|
| 95 |
+
freq = gr.Dropdown(choices=["", "D", "W", "MS", "M"], value="MS",
|
| 96 |
+
label="Frecuencia (opcional). ''=inferir, MS=mensual")
|
| 97 |
+
btn = gr.Button("Generar pronóstico")
|
| 98 |
+
out_table = gr.Dataframe(label="Tabla de pronóstico")
|
| 99 |
+
out_plot = gr.Plot(label="Gráfica")
|
| 100 |
+
# api_name → te da un endpoint gratis para consumir como API
|
| 101 |
+
btn.click(forecast_fn, inputs=[file, horizon, freq], outputs=[out_table, out_plot], api_name="/forecast")
|
| 102 |
+
|
| 103 |
+
if __name__ == "__main__":
|
| 104 |
+
demo.queue().launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.44.0
|
| 2 |
+
pandas>=2.0.0
|
| 3 |
+
numpy>=1.24.0
|
| 4 |
+
torch>=2.2.0
|
| 5 |
+
chronos-forecasting>=1.2.0
|
| 6 |
+
matplotlib>=3.7.0
|