Spaces:
Runtime error
Runtime error
| # https://python.langchain.com/docs/tutorials/rag/ | |
| import gradio as gr | |
| from langchain import hub | |
| from langchain_chroma import Chroma | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_core.runnables import RunnablePassthrough | |
| from langchain_mistralai import MistralAIEmbeddings | |
| from langchain_community.embeddings import HuggingFaceInstructEmbeddings | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from langchain_mistralai import ChatMistralAI | |
| from langchain_community.document_loaders import PyPDFLoader | |
| import requests | |
| from pathlib import Path | |
| from langchain_community.document_loaders import WebBaseLoader, ArxivLoader | |
| import bs4 | |
| from langchain_core.rate_limiters import InMemoryRateLimiter | |
| from urllib.parse import urljoin | |
| # LLM model | |
| rate_limiter = InMemoryRateLimiter( | |
| requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second | |
| check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request, | |
| max_bucket_size=10, # Controls the maximum burst size. | |
| ) | |
| llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter) | |
| # Embeddings | |
| embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1" | |
| # embed_model = "nvidia/NV-Embed-v2" | |
| embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model) | |
| # embeddings = MistralAIEmbeddings() | |
| def RAG(llm, docs, embeddings): | |
| # Split text | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| splits = text_splitter.split_documents(docs) | |
| # Create vector store | |
| vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) | |
| # Retrieve and generate using the relevant snippets of the documents | |
| retriever = vectorstore.as_retriever() | |
| # Prompt basis example for RAG systems | |
| prompt = hub.pull("rlm/rag-prompt") | |
| # Create the chain | |
| rag_chain = ( | |
| {"context": retriever | format_docs, "question": RunnablePassthrough()} | |
| | prompt | |
| | llm | |
| | StrOutputParser() | |
| ) | |
| return rag_chain | |
| def format_docs(docs): | |
| return "\n\n".join(doc.page_content for doc in docs) | |
| def handle_prompt(message, history, arxivcode, rag_chain): | |
| try: | |
| # Stream output | |
| out="" | |
| for chunk in rag_chain.stream(message): | |
| out += chunk | |
| yield out | |
| except: | |
| raise gr.Error("Requests rate limit exceeded") | |
| greetingsmessage = "Hi, I'm your personal arXiv reader. Ask me questions about the arXiv paper above" | |
| with gr.Blocks() as demo: | |
| arxiv_code = gr.Textbox("", label="arxiv.number") | |
| #rag_chain = initialize(arxiv_code) | |
| loader = ArxivLoader(query=str(arxiv_code),) | |
| docs = loader.load() | |
| #retriever = ArxivRetriever( | |
| # load_max_docs=2, | |
| # get_full_documents=True, | |
| #) | |
| #docs = retriever.invoke(str(arxivcode)) | |
| #for i in range(len(docs)): | |
| # docs[i].metadata['Published'] = str(docs[i].metadata['Published']) | |
| # Load, chunk and index the contents of the blog. | |
| #url = ['https://arxiv.org/abs/%s' % arxivcode] | |
| #loader = WebBaseLoader(url) | |
| #docs = loader.load() | |
| rag_chain = RAG(llm, docs, embeddings) | |
| gr.ChatInterface(handle_prompt, type="messages", theme=gr.themes.Soft(), | |
| description=greetingsmessage, | |
| additional_inputs=[arxiv_code, rag_chain] | |
| ) | |
| demo.launch() |