Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,66 +17,46 @@ from langchain_core.rate_limiters import InMemoryRateLimiter
|
|
| 17 |
from urllib.parse import urljoin
|
| 18 |
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
#
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
#docs = retriever.invoke(str(arxivcode))
|
| 28 |
-
#for i in range(len(docs)):
|
| 29 |
-
# docs[i].metadata['Published'] = str(docs[i].metadata['Published'])
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
|
|
|
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
|
| 41 |
-
max_bucket_size=10, # Controls the maximum burst size.
|
| 42 |
-
)
|
| 43 |
-
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
|
| 44 |
-
|
| 45 |
-
# Embeddings
|
| 46 |
-
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
| 47 |
-
# embed_model = "nvidia/NV-Embed-v2"
|
| 48 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
|
| 49 |
-
# embeddings = MistralAIEmbeddings()
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Create vector store
|
| 61 |
-
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
| 62 |
-
|
| 63 |
-
# Retrieve and generate using the relevant snippets of the documents
|
| 64 |
-
retriever = vectorstore.as_retriever()
|
| 65 |
-
|
| 66 |
-
# Prompt basis example for RAG systems
|
| 67 |
-
prompt = hub.pull("rlm/rag-prompt")
|
| 68 |
-
|
| 69 |
-
# Create the chain
|
| 70 |
-
rag_chain = (
|
| 71 |
-
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
| 72 |
-
| prompt
|
| 73 |
-
| llm
|
| 74 |
-
| StrOutputParser()
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
return rag_chain
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
def handle_prompt(message, history, arxivcode, rag_chain):
|
| 82 |
try:
|
|
@@ -91,14 +71,30 @@ def handle_prompt(message, history, arxivcode, rag_chain):
|
|
| 91 |
|
| 92 |
greetingsmessage = "Hi, I'm your personal arXiv reader. Ask me questions about the arXiv paper above"
|
| 93 |
|
|
|
|
| 94 |
with gr.Blocks() as demo:
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
description=greetingsmessage,
|
| 100 |
additional_inputs=[arxiv_code, rag_chain]
|
| 101 |
)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
demo.launch()
|
|
|
|
| 17 |
from urllib.parse import urljoin
|
| 18 |
|
| 19 |
|
| 20 |
+
# LLM model
|
| 21 |
+
rate_limiter = InMemoryRateLimiter(
|
| 22 |
+
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
|
| 23 |
+
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
|
| 24 |
+
max_bucket_size=10, # Controls the maximum burst size.
|
| 25 |
+
)
|
| 26 |
+
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Embeddings
|
| 29 |
+
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
| 30 |
+
# embed_model = "nvidia/NV-Embed-v2"
|
| 31 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
|
| 32 |
+
# embeddings = MistralAIEmbeddings()
|
| 33 |
|
| 34 |
+
def RAG(llm, docs, embeddings):
|
| 35 |
|
| 36 |
+
# Split text
|
| 37 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 38 |
+
splits = text_splitter.split_documents(docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Create vector store
|
| 41 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
| 42 |
+
|
| 43 |
+
# Retrieve and generate using the relevant snippets of the documents
|
| 44 |
+
retriever = vectorstore.as_retriever()
|
| 45 |
+
|
| 46 |
+
# Prompt basis example for RAG systems
|
| 47 |
+
prompt = hub.pull("rlm/rag-prompt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Create the chain
|
| 50 |
+
rag_chain = (
|
| 51 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
| 52 |
+
| prompt
|
| 53 |
+
| llm
|
| 54 |
+
| StrOutputParser()
|
| 55 |
+
)
|
| 56 |
+
return rag_chain
|
| 57 |
+
|
| 58 |
+
def format_docs(docs):
|
| 59 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
| 60 |
|
| 61 |
def handle_prompt(message, history, arxivcode, rag_chain):
|
| 62 |
try:
|
|
|
|
| 71 |
|
| 72 |
greetingsmessage = "Hi, I'm your personal arXiv reader. Ask me questions about the arXiv paper above"
|
| 73 |
|
| 74 |
+
|
| 75 |
with gr.Blocks() as demo:
|
| 76 |
+
arxiv_code = gr.Textbox("", label="arxiv.number")
|
| 77 |
+
|
| 78 |
+
#rag_chain = initialize(arxiv_code)
|
| 79 |
+
loader = ArxivLoader(query=str(arxivcode),)
|
| 80 |
+
docs = loader.load()
|
| 81 |
+
#retriever = ArxivRetriever(
|
| 82 |
+
# load_max_docs=2,
|
| 83 |
+
# get_full_documents=True,
|
| 84 |
+
#)
|
| 85 |
+
#docs = retriever.invoke(str(arxivcode))
|
| 86 |
+
#for i in range(len(docs)):
|
| 87 |
+
# docs[i].metadata['Published'] = str(docs[i].metadata['Published'])
|
| 88 |
+
|
| 89 |
+
# Load, chunk and index the contents of the blog.
|
| 90 |
+
#url = ['https://arxiv.org/abs/%s' % arxivcode]
|
| 91 |
+
#loader = WebBaseLoader(url)
|
| 92 |
+
#docs = loader.load()
|
| 93 |
+
rag_chain = RAG(llm, docs, embeddings)
|
| 94 |
|
| 95 |
+
gr.ChatInterface(handle_prompt, type="messages", theme=gr.themes.Soft(),
|
| 96 |
description=greetingsmessage,
|
| 97 |
additional_inputs=[arxiv_code, rag_chain]
|
| 98 |
)
|
| 99 |
|
| 100 |
+
demo.launch()
|
|
|