Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
from peft import PeftModel, PeftConfig
|
| 5 |
+
base_model = "TinyPixel/Llama-2-7B-bf16-sharded"
|
| 6 |
+
tuned_adapter = "newronai/llama-2-7b-QLoRA-Trial1"
|
| 7 |
+
bnb_config = BitsAndBytesConfig(
|
| 8 |
+
load_in_4bit=True,
|
| 9 |
+
bnb_4bit_quant_type="nf4",
|
| 10 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
config = PeftConfig.from_pretrained(tuned_adapter)
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(base_model,
|
| 16 |
+
use_cache="cache",
|
| 17 |
+
quantization_config=bnb_config
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
model = PeftModel.from_pretrained(model, tuned_adapter)
|
| 21 |
+
print("Model Downloaded")
|
| 22 |
+
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model,
|
| 24 |
+
use_cache="cache")
|
| 25 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 26 |
+
print("Tokenizer Ready")
|
| 27 |
+
|
| 28 |
+
def question_answer(context, question):
|
| 29 |
+
tokens = tokenizer.encode(question, return_tensors="pt").to("cuda")
|
| 30 |
+
output = model.generate(input_tokens)
|
| 31 |
+
output_text = tokenizer.batch_decode(output, skip_special_tokens = True)[0]
|
| 32 |
+
return output_text
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
gr.Interface(fn=question_answer, inputs=[gr.inputs.Textbox(lines=7, label="Context Paragraph"),
|
| 36 |
+
gr.inputs.Textbox(lines=2, label="Question"),],
|
| 37 |
+
outputs=[gr.outputs.Textbox(label="Answer")]).launch()
|