Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import spaces | |
| import json | |
| import math | |
| import os | |
| import traceback | |
| from io import BytesIO | |
| from typing import Any, Dict, List, Optional, Tuple | |
| import re | |
| import fitz # PyMuPDF | |
| import gradio as gr | |
| import requests | |
| import torch | |
| from huggingface_hub import snapshot_download | |
| from PIL import Image, ImageDraw, ImageFont | |
| from qwen_vl_utils import process_vision_info | |
| from transformers import AutoModelForCausalLM, AutoProcessor | |
| # Constants | |
| MIN_PIXELS = 3136 | |
| MAX_PIXELS = 11289600 | |
| IMAGE_FACTOR = 28 | |
| # Prompts | |
| prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
| 1. Bbox format: [x1, y1, x2, y2] | |
| 2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
| 3. Text Extraction & Formatting Rules: | |
| - Picture: For the 'Picture' category, the text field should be omitted. | |
| - Formula: Format its text as LaTeX. | |
| - Table: Format its text as HTML. | |
| - All Others (Text, Title, etc.): Format their text as Markdown. | |
| 4. Constraints: | |
| - The output text must be the original text from the image, with no translation. | |
| - All layout elements must be sorted according to human reading order. | |
| 5. Final Output: The entire output must be a single JSON object. | |
| """ | |
| # Utility functions | |
| def round_by_factor(number: int, factor: int) -> int: | |
| """Returns the closest integer to 'number' that is divisible by 'factor'.""" | |
| return round(number / factor) * factor | |
| def smart_resize( | |
| height: int, | |
| width: int, | |
| factor: int = 28, | |
| min_pixels: int = 3136, | |
| max_pixels: int = 11289600, | |
| ): | |
| """Rescales the image so that the following conditions are met: | |
| 1. Both dimensions (height and width) are divisible by 'factor'. | |
| 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. | |
| 3. The aspect ratio of the image is maintained as closely as possible. | |
| """ | |
| if max(height, width) / min(height, width) > 200: | |
| raise ValueError( | |
| f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" | |
| ) | |
| h_bar = max(factor, round_by_factor(height, factor)) | |
| w_bar = max(factor, round_by_factor(width, factor)) | |
| if h_bar * w_bar > max_pixels: | |
| beta = math.sqrt((height * width) / max_pixels) | |
| h_bar = round_by_factor(height / beta, factor) | |
| w_bar = round_by_factor(width / beta, factor) | |
| elif h_bar * w_bar < min_pixels: | |
| beta = math.sqrt(min_pixels / (height * width)) | |
| h_bar = round_by_factor(height * beta, factor) | |
| w_bar = round_by_factor(width * beta, factor) | |
| return h_bar, w_bar | |
| def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None): | |
| """Fetch and process an image""" | |
| if isinstance(image_input, str): | |
| if image_input.startswith(("http://", "https://")): | |
| response = requests.get(image_input) | |
| image = Image.open(BytesIO(response.content)).convert('RGB') | |
| else: | |
| image = Image.open(image_input).convert('RGB') | |
| elif isinstance(image_input, Image.Image): | |
| image = image_input.convert('RGB') | |
| else: | |
| raise ValueError(f"Invalid image input type: {type(image_input)}") | |
| if min_pixels is not None or max_pixels is not None: | |
| min_pixels = min_pixels or MIN_PIXELS | |
| max_pixels = max_pixels or MAX_PIXELS | |
| height, width = smart_resize( | |
| image.height, | |
| image.width, | |
| factor=IMAGE_FACTOR, | |
| min_pixels=min_pixels, | |
| max_pixels=max_pixels | |
| ) | |
| image = image.resize((width, height), Image.LANCZOS) | |
| return image | |
| def load_images_from_pdf(pdf_path: str) -> List[Image.Image]: | |
| """Load images from PDF file""" | |
| images = [] | |
| try: | |
| pdf_document = fitz.open(pdf_path) | |
| for page_num in range(len(pdf_document)): | |
| page = pdf_document.load_page(page_num) | |
| # Convert page to image | |
| mat = fitz.Matrix(2.0, 2.0) # Increase resolution | |
| pix = page.get_pixmap(matrix=mat) | |
| img_data = pix.tobytes("ppm") | |
| image = Image.open(BytesIO(img_data)).convert('RGB') | |
| images.append(image) | |
| pdf_document.close() | |
| except Exception as e: | |
| print(f"Error loading PDF: {e}") | |
| return [] | |
| return images | |
| def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image: | |
| """Draw layout bounding boxes on image""" | |
| img_copy = image.copy() | |
| draw = ImageDraw.Draw(img_copy) | |
| # Colors for different categories | |
| colors = { | |
| 'Caption': '#FF6B6B', | |
| 'Footnote': '#4ECDC4', | |
| 'Formula': '#45B7D1', | |
| 'List-item': '#96CEB4', | |
| 'Page-footer': '#FFEAA7', | |
| 'Page-header': '#DDA0DD', | |
| 'Picture': '#FFD93D', | |
| 'Section-header': '#6C5CE7', | |
| 'Table': '#FD79A8', | |
| 'Text': '#74B9FF', | |
| 'Title': '#E17055' | |
| } | |
| try: | |
| # Load a font | |
| try: | |
| font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) | |
| except Exception: | |
| font = ImageFont.load_default() | |
| for item in layout_data: | |
| if 'bbox' in item and 'category' in item: | |
| bbox = item['bbox'] | |
| category = item['category'] | |
| color = colors.get(category, '#000000') | |
| # Draw rectangle | |
| draw.rectangle(bbox, outline=color, width=2) | |
| # Draw label | |
| label = category | |
| label_bbox = draw.textbbox((0, 0), label, font=font) | |
| label_width = label_bbox[2] - label_bbox[0] | |
| label_height = label_bbox[3] - label_bbox[1] | |
| # Position label above the box | |
| label_x = bbox[0] | |
| label_y = max(0, bbox[1] - label_height - 2) | |
| # Draw background for label | |
| draw.rectangle( | |
| [label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], | |
| fill=color | |
| ) | |
| # Draw text | |
| draw.text((label_x + 2, label_y + 1), label, fill='white', font=font) | |
| except Exception as e: | |
| print(f"Error drawing layout: {e}") | |
| return img_copy | |
| def is_arabic_text(text: str) -> bool: | |
| """Check if text in headers and paragraphs contains mostly Arabic characters""" | |
| if not text: | |
| return False | |
| # Extract text from headers and paragraphs only | |
| # Match markdown headers (# ## ###) and regular paragraph text | |
| header_pattern = r'^#{1,6}\s+(.+)$' | |
| paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$' | |
| content_text = [] | |
| for line in text.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| # Check for headers | |
| header_match = re.match(header_pattern, line, re.MULTILINE) | |
| if header_match: | |
| content_text.append(header_match.group(1)) | |
| continue | |
| # Check for paragraph text (exclude lists, tables, code blocks, images) | |
| if re.match(paragraph_pattern, line, re.MULTILINE): | |
| content_text.append(line) | |
| if not content_text: | |
| return False | |
| # Join all content text and check for Arabic characters | |
| combined_text = ' '.join(content_text) | |
| # Arabic Unicode ranges | |
| arabic_chars = 0 | |
| total_chars = 0 | |
| for char in combined_text: | |
| if char.isalpha(): | |
| total_chars += 1 | |
| # Arabic script ranges | |
| if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'): | |
| arabic_chars += 1 | |
| if total_chars == 0: | |
| return False | |
| # Consider text as Arabic if more than 50% of alphabetic characters are Arabic | |
| return (arabic_chars / total_chars) > 0.5 | |
| def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str: | |
| """Convert layout JSON to markdown format""" | |
| import base64 | |
| from io import BytesIO | |
| markdown_lines = [] | |
| try: | |
| # Sort items by reading order (top to bottom, left to right) | |
| sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) | |
| for item in sorted_items: | |
| category = item.get('category', '') | |
| text = item.get(text_key, '') | |
| bbox = item.get('bbox', []) | |
| if category == 'Picture': | |
| # Extract image region and embed it | |
| if bbox and len(bbox) == 4: | |
| try: | |
| # Extract the image region | |
| x1, y1, x2, y2 = bbox | |
| # Ensure coordinates are within image bounds | |
| x1, y1 = max(0, int(x1)), max(0, int(y1)) | |
| x2, y2 = min(image.width, int(x2)), min(image.height, int(y2)) | |
| if x2 > x1 and y2 > y1: | |
| cropped_img = image.crop((x1, y1, x2, y2)) | |
| # Convert to base64 for embedding | |
| buffer = BytesIO() | |
| cropped_img.save(buffer, format='PNG') | |
| img_data = base64.b64encode(buffer.getvalue()).decode() | |
| # Add as markdown image | |
| markdown_lines.append(f"\n") | |
| else: | |
| markdown_lines.append("\n") | |
| except Exception as e: | |
| print(f"Error processing image region: {e}") | |
| markdown_lines.append("\n") | |
| else: | |
| markdown_lines.append("\n") | |
| elif not text: | |
| continue | |
| elif category == 'Title': | |
| markdown_lines.append(f"# {text}\n") | |
| elif category == 'Section-header': | |
| markdown_lines.append(f"## {text}\n") | |
| elif category == 'Text': | |
| markdown_lines.append(f"{text}\n") | |
| elif category == 'List-item': | |
| markdown_lines.append(f"- {text}\n") | |
| elif category == 'Table': | |
| # If text is already HTML, keep it as is | |
| if text.strip().startswith('<'): | |
| markdown_lines.append(f"{text}\n") | |
| else: | |
| markdown_lines.append(f"**Table:** {text}\n") | |
| elif category == 'Formula': | |
| # If text is LaTeX, format it properly | |
| if text.strip().startswith('$') or '\\' in text: | |
| markdown_lines.append(f"$$\n{text}\n$$\n") | |
| else: | |
| markdown_lines.append(f"**Formula:** {text}\n") | |
| elif category == 'Caption': | |
| markdown_lines.append(f"*{text}*\n") | |
| elif category == 'Footnote': | |
| markdown_lines.append(f"^{text}^\n") | |
| elif category in ['Page-header', 'Page-footer']: | |
| # Skip headers and footers in main content | |
| continue | |
| else: | |
| markdown_lines.append(f"{text}\n") | |
| markdown_lines.append("") # Add spacing | |
| except Exception as e: | |
| print(f"Error converting to markdown: {e}") | |
| return str(layout_data) | |
| return "\n".join(markdown_lines) | |
| # Initialize model/processor lazily inside GPU context | |
| model_id = "rednote-hilab/dots.ocr" | |
| model_path = "./models/dots-ocr-local" | |
| model = None | |
| processor = None | |
| def ensure_model_loaded(): | |
| """Lazily download and load model/processor using eager attention (no FlashAttention).""" | |
| global model, processor | |
| if model is not None and processor is not None: | |
| return | |
| # Always use eager attention | |
| attn_impl = "eager" | |
| # Use GPU if available, otherwise CPU | |
| if torch.cuda.is_available(): | |
| dtype = torch.bfloat16 # Use bfloat16 on GPU for consistency | |
| device_map = "auto" | |
| else: | |
| dtype = torch.float32 | |
| device_map = "cpu" | |
| # Download snapshot locally (idempotent) | |
| snapshot_download( | |
| repo_id=model_id, | |
| local_dir=model_path, | |
| local_dir_use_symlinks=False, | |
| ) | |
| # Load model/processor | |
| loaded_model = AutoModelForCausalLM.from_pretrained( | |
| model_path, | |
| attn_implementation=attn_impl, | |
| torch_dtype=dtype, | |
| device_map=device_map, | |
| trust_remote_code=True, | |
| low_cpu_mem_usage=True, | |
| ) | |
| loaded_processor = AutoProcessor.from_pretrained( | |
| model_path, | |
| trust_remote_code=True, | |
| ) | |
| model = loaded_model | |
| processor = loaded_processor | |
| # Global state variables | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # PDF handling state | |
| pdf_cache = { | |
| "images": [], | |
| "current_page": 0, | |
| "total_pages": 0, | |
| "file_type": None, | |
| "is_parsed": False, | |
| "results": [] | |
| } | |
| def inference(image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str: | |
| """Run inference on an image with the given prompt""" | |
| try: | |
| ensure_model_loaded() | |
| if model is None or processor is None: | |
| raise RuntimeError("Model not loaded. Please check model initialization.") | |
| # Prepare messages in the expected format | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image | |
| }, | |
| {"type": "text", "text": prompt} | |
| ] | |
| } | |
| ] | |
| # Apply chat template | |
| text = processor.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| # Process vision information | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| # Prepare inputs | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| # Move to the model's primary device (works with device_map as well) | |
| primary_device = next(model.parameters()).device | |
| inputs = inputs.to(primary_device) | |
| # Generate output | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False, | |
| temperature=0.1 | |
| ) | |
| # Decode output | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0] if output_text else "" | |
| except Exception as e: | |
| print(f"Error during inference: {e}") | |
| traceback.print_exc() | |
| return f"Error during inference: {str(e)}" | |
| def _generate_text_and_confidence_for_crop( | |
| image: Image.Image, | |
| max_new_tokens: int = 128, | |
| temperature: float = 0.1, | |
| ) -> Tuple[str, float]: | |
| """Generate text for a cropped region and compute average per-token confidence from model scores. | |
| Returns (generated_text, average_confidence_percent). | |
| """ | |
| try: | |
| ensure_model_loaded() | |
| # Prepare a concise extraction prompt for the crop | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| { | |
| "type": "text", | |
| "text": "Extract the exact text content from this image region. Output text only without translation or additional words.", | |
| }, | |
| ], | |
| } | |
| ] | |
| # Apply chat template | |
| text = processor.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| # Process vision information | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| # Prepare inputs | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| primary_device = next(model.parameters()).device | |
| inputs = inputs.to(primary_device) | |
| # Generate with scores | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False, | |
| temperature=temperature, | |
| output_scores=True, | |
| return_dict_in_generate=True, | |
| ) | |
| sequences = outputs.sequences # [batch, seq_len] | |
| input_len = inputs.input_ids.shape[1] | |
| # Trim input prompt ids to isolate generated tokens | |
| generated_ids = sequences[:, input_len:] | |
| generated_text = processor.batch_decode( | |
| generated_ids, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=False, | |
| )[0].strip() | |
| # Compute average probability of chosen tokens | |
| confidences: List[float] = [] | |
| for step, step_scores in enumerate(outputs.scores or []): | |
| # step_scores: [batch, vocab] | |
| probs = torch.nn.functional.softmax(step_scores, dim=-1) | |
| # token id chosen at this step | |
| if input_len + step < sequences.shape[1]: | |
| chosen_ids = sequences[:, input_len + step].unsqueeze(-1) | |
| chosen_probs = probs.gather(dim=-1, index=chosen_ids) # [batch, 1] | |
| confidences.append(float(chosen_probs[0, 0].item())) | |
| avg_conf_percent = (sum(confidences) / len(confidences) * 100.0) if confidences else 0.0 | |
| return generated_text, avg_conf_percent | |
| except Exception as e: | |
| print(f"Error generating crop confidence: {e}") | |
| traceback.print_exc() | |
| return "", 0.0 | |
| def process_image( | |
| image: Image.Image, | |
| min_pixels: Optional[int] = None, | |
| max_pixels: Optional[int] = None, | |
| max_new_tokens: int = 24000, | |
| ) -> Dict[str, Any]: | |
| """Process a single image with the specified prompt mode""" | |
| try: | |
| # Resize image if needed | |
| if min_pixels is not None or max_pixels is not None: | |
| image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels) | |
| # Run inference with the default prompt | |
| raw_output = inference(image, prompt, max_new_tokens=max_new_tokens) | |
| # Process results based on prompt mode | |
| result = { | |
| 'original_image': image, | |
| 'raw_output': raw_output, | |
| 'processed_image': image, | |
| 'layout_result': None, | |
| 'markdown_content': None | |
| } | |
| # Try to parse JSON and create visualizations (since we're doing layout analysis) | |
| try: | |
| # Try to parse JSON output | |
| layout_data = json.loads(raw_output) | |
| # Compute per-region confidence using the model on each cropped region | |
| for idx, item in enumerate(layout_data): | |
| try: | |
| bbox = item.get('bbox', []) | |
| text_content = item.get('text', '') | |
| category = item.get('category', '') | |
| if (not text_content) or category == 'Picture' or not bbox or len(bbox) != 4: | |
| continue | |
| x1, y1, x2, y2 = bbox | |
| x1, y1 = max(0, int(x1)), max(0, int(y1)) | |
| x2, y2 = min(image.width, int(x2)), min(image.height, int(y2)) | |
| if x2 <= x1 or y2 <= y1: | |
| continue | |
| crop_img = image.crop((x1, y1, x2, y2)) | |
| # Generate and score text for this crop; we only keep the confidence | |
| _, region_conf = _generate_text_and_confidence_for_crop(crop_img) | |
| item['confidence'] = region_conf | |
| except Exception as e: | |
| print(f"Error scoring region {idx}: {e}") | |
| # Leave confidence absent if scoring fails | |
| result['layout_result'] = layout_data | |
| # Create visualization with bounding boxes | |
| try: | |
| processed_image = draw_layout_on_image(image, layout_data) | |
| result['processed_image'] = processed_image | |
| except Exception as e: | |
| print(f"Error drawing layout: {e}") | |
| result['processed_image'] = image | |
| # Generate markdown from layout data | |
| try: | |
| markdown_content = layoutjson2md(image, layout_data, text_key='text') | |
| result['markdown_content'] = markdown_content | |
| except Exception as e: | |
| print(f"Error generating markdown: {e}") | |
| result['markdown_content'] = raw_output | |
| except json.JSONDecodeError: | |
| print("Failed to parse JSON output, using raw output") | |
| result['markdown_content'] = raw_output | |
| return result | |
| except Exception as e: | |
| print(f"Error processing image: {e}") | |
| traceback.print_exc() | |
| return { | |
| 'original_image': image, | |
| 'raw_output': f"Error processing image: {str(e)}", | |
| 'processed_image': image, | |
| 'layout_result': None, | |
| 'markdown_content': f"Error processing image: {str(e)}" | |
| } | |
| def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]: | |
| """Load file for preview (supports PDF and images)""" | |
| global pdf_cache | |
| if not file_path or not os.path.exists(file_path): | |
| return None, "No file selected" | |
| file_ext = os.path.splitext(file_path)[1].lower() | |
| try: | |
| if file_ext == '.pdf': | |
| # Load PDF pages | |
| images = load_images_from_pdf(file_path) | |
| if not images: | |
| return None, "Failed to load PDF" | |
| pdf_cache.update({ | |
| "images": images, | |
| "current_page": 0, | |
| "total_pages": len(images), | |
| "file_type": "pdf", | |
| "is_parsed": False, | |
| "results": [] | |
| }) | |
| return images[0], f"Page 1 / {len(images)}" | |
| elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: | |
| # Load single image | |
| image = Image.open(file_path).convert('RGB') | |
| pdf_cache.update({ | |
| "images": [image], | |
| "current_page": 0, | |
| "total_pages": 1, | |
| "file_type": "image", | |
| "is_parsed": False, | |
| "results": [] | |
| }) | |
| return image, "Page 1 / 1" | |
| else: | |
| return None, f"Unsupported file format: {file_ext}" | |
| except Exception as e: | |
| print(f"Error loading file: {e}") | |
| return None, f"Error loading file: {str(e)}" | |
| def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, List, Any, Optional[Image.Image], Optional[Dict]]: | |
| """Navigate through PDF pages and update all relevant outputs.""" | |
| global pdf_cache | |
| if not pdf_cache["images"]: | |
| return None, '<div class="page-info">No file loaded</div>', [], "No results yet", None, None | |
| if direction == "prev": | |
| pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) | |
| elif direction == "next": | |
| pdf_cache["current_page"] = min( | |
| pdf_cache["total_pages"] - 1, | |
| pdf_cache["current_page"] + 1 | |
| ) | |
| index = pdf_cache["current_page"] | |
| current_image_preview = pdf_cache["images"][index] | |
| page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>' | |
| # Initialize default result values | |
| markdown_content = "Page not processed yet" | |
| processed_img = None | |
| layout_json = None | |
| ocr_table_data = [] | |
| # Get results for current page if available | |
| if (pdf_cache["is_parsed"] and | |
| index < len(pdf_cache["results"]) and | |
| pdf_cache["results"][index]): | |
| result = pdf_cache["results"][index] | |
| markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available') | |
| processed_img = result.get('processed_image', None) # Get the processed image | |
| layout_json = result.get('layout_result', None) # Get the layout JSON | |
| # Generate OCR table for current page | |
| if layout_json and result.get('original_image'): | |
| # Need to import the helper here or move it outside | |
| import base64 | |
| from io import BytesIO | |
| for idx, item in enumerate(layout_json): | |
| bbox = item.get('bbox', []) | |
| text = item.get('text', '') | |
| category = item.get('category', '') | |
| if not text or category == 'Picture': | |
| continue | |
| img_html = "" | |
| if bbox and len(bbox) == 4: | |
| try: | |
| x1, y1, x2, y2 = bbox | |
| orig_img = result['original_image'] | |
| x1, y1 = max(0, int(x1)), max(0, int(y1)) | |
| x2, y2 = min(orig_img.width, int(x2)), min(orig_img.height, int(y2)) | |
| if x2 > x1 and y2 > y1: | |
| cropped_img = orig_img.crop((x1, y1, x2, y2)) | |
| buffer = BytesIO() | |
| cropped_img.save(buffer, format='PNG') | |
| img_data = base64.b64encode(buffer.getvalue()).decode() | |
| img_html = f'<img src="data:image/png;base64,{img_data}" style="max-width:200px; max-height:100px; object-fit:contain;" />' | |
| except Exception as e: | |
| print(f"Error cropping region {idx}: {e}") | |
| img_html = f"<div>Region {idx+1}</div>" | |
| else: | |
| img_html = f"<div>Region {idx+1}</div>" | |
| # Extract confidence from item if available, otherwise N/A | |
| confidence = item.get('confidence', 'N/A') | |
| if isinstance(confidence, (int, float)): | |
| confidence = f"{confidence:.1f}%" | |
| elif confidence != 'N/A': | |
| confidence = str(confidence) | |
| ocr_table_data.append([img_html, text, confidence]) | |
| # Check for Arabic text to set RTL property | |
| if is_arabic_text(markdown_content): | |
| markdown_update = gr.update(value=markdown_content, rtl=True) | |
| else: | |
| markdown_update = markdown_content | |
| return current_image_preview, page_info_html, ocr_table_data, markdown_update, processed_img, layout_json | |
| def create_gradio_interface(): | |
| """Create the Gradio interface""" | |
| # Custom CSS | |
| css = """ | |
| .main-container { | |
| max-width: 1400px; | |
| margin: 0 auto; | |
| } | |
| .header-text { | |
| text-align: center; | |
| color: #2c3e50; | |
| margin-bottom: 20px; | |
| } | |
| .process-button { | |
| border: none !important; | |
| color: white !important; | |
| font-weight: bold !important; | |
| } | |
| .process-button:hover { | |
| transform: translateY(-2px) !important; | |
| box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; | |
| } | |
| .info-box { | |
| border: 1px solid #dee2e6; | |
| border-radius: 8px; | |
| padding: 15px; | |
| margin: 10px 0; | |
| } | |
| .page-info { | |
| text-align: center; | |
| padding: 8px 16px; | |
| border-radius: 20px; | |
| font-weight: bold; | |
| margin: 10px 0; | |
| } | |
| .model-status { | |
| padding: 10px; | |
| border-radius: 8px; | |
| margin: 10px 0; | |
| text-align: center; | |
| font-weight: bold; | |
| } | |
| .status-ready { | |
| background: #d1edff; | |
| color: #0c5460; | |
| border: 1px solid #b8daff; | |
| } | |
| """ | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css, title="Arabic OCR - Document Text Extraction") as demo: | |
| # Header | |
| gr.HTML(""" | |
| <div class="title" style="text-align: center"> | |
| <h1>🔍 Arabic OCR - Professional Document Text Extraction</h1> | |
| <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
| Advanced AI-powered OCR solution for Arabic documents with high accuracy layout detection and text extraction | |
| </p> | |
| </div> | |
| """) | |
| # Main interface | |
| with gr.Row(): | |
| # Left column - Input and controls | |
| with gr.Column(scale=1): | |
| # File input | |
| file_input = gr.File( | |
| label="Upload Image or PDF", | |
| file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], | |
| type="filepath" | |
| ) | |
| # Image preview | |
| image_preview = gr.Image( | |
| label="Preview", | |
| type="pil", | |
| interactive=False, | |
| height=300 | |
| ) | |
| # Page navigation for PDFs | |
| with gr.Row(): | |
| prev_page_btn = gr.Button("◀ Previous", size="md") | |
| page_info = gr.HTML('<div class="page-info">No file loaded</div>') | |
| next_page_btn = gr.Button("Next ▶", size="md") | |
| # Advanced settings | |
| with gr.Accordion("Advanced Settings", open=False): | |
| max_new_tokens = gr.Slider( | |
| minimum=1000, | |
| maximum=32000, | |
| value=24000, | |
| step=1000, | |
| label="Max New Tokens", | |
| info="Maximum number of tokens to generate" | |
| ) | |
| min_pixels = gr.Number( | |
| value=MIN_PIXELS, | |
| label="Min Pixels", | |
| info="Minimum image resolution" | |
| ) | |
| max_pixels = gr.Number( | |
| value=MAX_PIXELS, | |
| label="Max Pixels", | |
| info="Maximum image resolution" | |
| ) | |
| # Process button | |
| process_btn = gr.Button( | |
| "🚀 Process Document", | |
| variant="primary", | |
| elem_classes=["process-button"], | |
| size="lg" | |
| ) | |
| # Clear button | |
| clear_btn = gr.Button("🗑️ Clear All", variant="secondary") | |
| # Right column - Results | |
| with gr.Column(scale=2): | |
| # Results tabs | |
| with gr.Tabs(): | |
| # Processed image tab | |
| with gr.Tab("🖼️ Processed Image"): | |
| processed_image = gr.Image( | |
| label="Image with Layout Detection", | |
| type="pil", | |
| interactive=False, | |
| height=500 | |
| ) | |
| # Editable OCR Results Table | |
| with gr.Tab("📊 OCR Results Table"): | |
| gr.Markdown("### Editable OCR Results\nReview and edit the extracted text for each detected region") | |
| ocr_table = gr.Dataframe( | |
| headers=["Region Image", "Extracted Text", "Confidence"], | |
| datatype=["html", "str", "str"], | |
| label="OCR Results", | |
| interactive=True, | |
| wrap=True | |
| ) | |
| # Markdown output tab | |
| with gr.Tab("📝 Extracted Content"): | |
| markdown_output = gr.Markdown( | |
| value="Click 'Process Document' to see extracted content...", | |
| height=500 | |
| ) | |
| # JSON layout tab | |
| with gr.Tab("📋 Layout JSON"): | |
| json_output = gr.JSON( | |
| label="Layout Analysis Results", | |
| value=None | |
| ) | |
| # Helper function to create OCR table | |
| def create_ocr_table(image: Image.Image, layout_data: List[Dict]) -> List[List[str]]: | |
| """Create table data from layout results with cropped images""" | |
| import base64 | |
| from io import BytesIO | |
| if not layout_data: | |
| return [] | |
| table_data = [] | |
| for idx, item in enumerate(layout_data): | |
| bbox = item.get('bbox', []) | |
| text = item.get('text', '') | |
| category = item.get('category', '') | |
| # Skip items without text or Picture category | |
| if not text or category == 'Picture': | |
| continue | |
| # Crop the image region | |
| img_html = "" | |
| if bbox and len(bbox) == 4: | |
| try: | |
| x1, y1, x2, y2 = bbox | |
| # Ensure coordinates are within image bounds | |
| x1, y1 = max(0, int(x1)), max(0, int(y1)) | |
| x2, y2 = min(image.width, int(x2)), min(image.height, int(y2)) | |
| if x2 > x1 and y2 > y1: | |
| cropped_img = image.crop((x1, y1, x2, y2)) | |
| # Convert to base64 for HTML display | |
| buffer = BytesIO() | |
| cropped_img.save(buffer, format='PNG') | |
| img_data = base64.b64encode(buffer.getvalue()).decode() | |
| # Create HTML img tag | |
| img_html = f'<img src="data:image/png;base64,{img_data}" style="max-width:200px; max-height:100px; object-fit:contain;" />' | |
| except Exception as e: | |
| print(f"Error cropping region {idx}: {e}") | |
| img_html = f"<div>Region {idx+1}</div>" | |
| else: | |
| img_html = f"<div>Region {idx+1}</div>" | |
| # Add confidence score - extract from item if available, otherwise N/A | |
| confidence = item.get('confidence', 'N/A') | |
| if isinstance(confidence, (int, float)): | |
| confidence = f"{confidence:.1f}%" | |
| elif confidence != 'N/A': | |
| confidence = str(confidence) | |
| # Add row to table | |
| table_data.append([img_html, text, confidence]) | |
| return table_data | |
| # Event handlers | |
| def process_document(file_path, max_tokens, min_pix, max_pix): | |
| """Process the uploaded document""" | |
| global pdf_cache | |
| try: | |
| # Ensure model/processor are loaded within GPU context | |
| ensure_model_loaded() | |
| if not file_path: | |
| return None, [], "Please upload a file first.", None | |
| if model is None: | |
| return None, [], "Model not loaded. Please refresh the page and try again.", None | |
| # Load and preview file | |
| image, page_info = load_file_for_preview(file_path) | |
| if image is None: | |
| return None, [], page_info, None | |
| # Process the image(s) | |
| if pdf_cache["file_type"] == "pdf": | |
| # Process all pages for PDF | |
| all_results = [] | |
| all_markdown = [] | |
| for i, img in enumerate(pdf_cache["images"]): | |
| result = process_image( | |
| img, | |
| min_pixels=int(min_pix) if min_pix else None, | |
| max_pixels=int(max_pix) if max_pix else None, | |
| max_new_tokens=int(max_tokens) if max_tokens else 24000, | |
| ) | |
| all_results.append(result) | |
| if result.get('markdown_content'): | |
| all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}") | |
| pdf_cache["results"] = all_results | |
| pdf_cache["is_parsed"] = True | |
| # Show results for first page | |
| first_result = all_results[0] | |
| combined_markdown = "\n\n---\n\n".join(all_markdown) | |
| # Check if the combined markdown contains mostly Arabic text | |
| if is_arabic_text(combined_markdown): | |
| markdown_update = gr.update(value=combined_markdown, rtl=True) | |
| else: | |
| markdown_update = combined_markdown | |
| # Create OCR table for first page | |
| ocr_table_data = [] | |
| if first_result['layout_result']: | |
| ocr_table_data = create_ocr_table( | |
| first_result['original_image'], | |
| first_result['layout_result'] | |
| ) | |
| return ( | |
| first_result['processed_image'], | |
| ocr_table_data, | |
| markdown_update, | |
| first_result['layout_result'] | |
| ) | |
| else: | |
| # Process single image | |
| result = process_image( | |
| image, | |
| min_pixels=int(min_pix) if min_pix else None, | |
| max_pixels=int(max_pix) if max_pix else None, | |
| max_new_tokens=int(max_tokens) if max_tokens else 24000, | |
| ) | |
| pdf_cache["results"] = [result] | |
| pdf_cache["is_parsed"] = True | |
| # Check if the content contains mostly Arabic text | |
| content = result['markdown_content'] or "No content extracted" | |
| if is_arabic_text(content): | |
| markdown_update = gr.update(value=content, rtl=True) | |
| else: | |
| markdown_update = content | |
| # Create OCR table | |
| ocr_table_data = [] | |
| if result['layout_result']: | |
| ocr_table_data = create_ocr_table( | |
| result['original_image'], | |
| result['layout_result'] | |
| ) | |
| return ( | |
| result['processed_image'], | |
| ocr_table_data, | |
| markdown_update, | |
| result['layout_result'] | |
| ) | |
| except Exception as e: | |
| error_msg = f"Error processing document: {str(e)}" | |
| print(error_msg) | |
| traceback.print_exc() | |
| return None, [], error_msg, None | |
| def handle_file_upload(file_path): | |
| """Handle file upload and show preview""" | |
| if not file_path: | |
| return None, "No file loaded" | |
| image, page_info = load_file_for_preview(file_path) | |
| return image, page_info | |
| def handle_page_turn(direction): | |
| """Handle page navigation""" | |
| image, page_info, result = turn_page(direction) | |
| return image, page_info, result | |
| def clear_all(): | |
| """Clear all data and reset interface""" | |
| global pdf_cache | |
| pdf_cache = { | |
| "images": [], "current_page": 0, "total_pages": 0, | |
| "file_type": None, "is_parsed": False, "results": [] | |
| } | |
| return ( | |
| None, # file_input | |
| None, # image_preview | |
| '<div class="page-info">No file loaded</div>', # page_info | |
| None, # processed_image | |
| [], # ocr_table | |
| "Click 'Process Document' to see extracted content...", # markdown_output | |
| None, # json_output | |
| ) | |
| # Wire up event handlers | |
| file_input.change( | |
| handle_file_upload, | |
| inputs=[file_input], | |
| outputs=[image_preview, page_info] | |
| ) | |
| # The outputs list is now updated to include all components that need to change | |
| prev_page_btn.click( | |
| lambda: turn_page("prev"), | |
| outputs=[image_preview, page_info, ocr_table, markdown_output, processed_image, json_output] | |
| ) | |
| next_page_btn.click( | |
| lambda: turn_page("next"), | |
| outputs=[image_preview, page_info, ocr_table, markdown_output, processed_image, json_output] | |
| ) | |
| process_btn.click( | |
| process_document, | |
| inputs=[file_input, max_new_tokens, min_pixels, max_pixels], | |
| outputs=[processed_image, ocr_table, markdown_output, json_output] | |
| ) | |
| # The outputs list for the clear button is now correct | |
| clear_btn.click( | |
| clear_all, | |
| outputs=[ | |
| file_input, image_preview, page_info, processed_image, | |
| ocr_table, markdown_output, json_output | |
| ] | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| # Create and launch the interface | |
| demo = create_gradio_interface() | |
| demo.queue(max_size=10).launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=False, | |
| debug=True, | |
| show_error=True | |
| ) | |