Spaces:
Runtime error
Runtime error
| <!--Copyright 2022 The HuggingFace Team. All rights reserved. | |
| Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
| the License. You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
| an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
| --> | |
| # Hyperparameter Search using Trainer API | |
| π€ Transformers provides a [`Trainer`] class optimized for training π€ Transformers models, making it easier to start training without manually writing your own training loop. The [`Trainer`] provides API for hyperparameter search. This doc shows how to enable it in example. | |
| ## Hyperparameter Search backend | |
| [`Trainer`] supports four hyperparameter search backends currently: | |
| [optuna](https://optuna.org/), [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html) and [wandb](https://wandb.ai/site/sweeps). | |
| you should install them before using them as the hyperparameter search backend | |
| ```bash | |
| pip install optuna/sigopt/wandb/ray[tune] | |
| ``` | |
| ## How to enable Hyperparameter search in example | |
| Define the hyperparameter search space, different backends need different format. | |
| For sigopt, see sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter), it's like following: | |
| ```py | |
| >>> def sigopt_hp_space(trial): | |
| ... return [ | |
| ... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, | |
| ... { | |
| ... "categorical_values": ["16", "32", "64", "128"], | |
| ... "name": "per_device_train_batch_size", | |
| ... "type": "categorical", | |
| ... }, | |
| ... ] | |
| ``` | |
| For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py), it's like following: | |
| ```py | |
| >>> def optuna_hp_space(trial): | |
| ... return { | |
| ... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), | |
| ... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), | |
| ... } | |
| ``` | |
| For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api_docs/search_space.html), it's like following: | |
| ```py | |
| >>> def ray_hp_space(trial): | |
| ... return { | |
| ... "learning_rate": tune.loguniform(1e-6, 1e-4), | |
| ... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]), | |
| ... } | |
| ``` | |
| For wandb, see wandb [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration), it's like following: | |
| ```py | |
| >>> def wandb_hp_space(trial): | |
| ... return { | |
| ... "method": "random", | |
| ... "metric": {"name": "objective", "goal": "minimize"}, | |
| ... "parameters": { | |
| ... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, | |
| ... "per_device_train_batch_size": {"values": [16, 32, 64, 128]}, | |
| ... }, | |
| ... } | |
| ``` | |
| Define a `model_init` function and pass it to the [`Trainer`], as an example: | |
| ```py | |
| >>> def model_init(trial): | |
| ... return AutoModelForSequenceClassification.from_pretrained( | |
| ... model_args.model_name_or_path, | |
| ... from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
| ... config=config, | |
| ... cache_dir=model_args.cache_dir, | |
| ... revision=model_args.model_revision, | |
| ... use_auth_token=True if model_args.use_auth_token else None, | |
| ... ) | |
| ``` | |
| Create a [`Trainer`] with your `model_init` function, training arguments, training and test datasets, and evaluation function: | |
| ```py | |
| >>> trainer = Trainer( | |
| ... model=None, | |
| ... args=training_args, | |
| ... train_dataset=small_train_dataset, | |
| ... eval_dataset=small_eval_dataset, | |
| ... compute_metrics=compute_metrics, | |
| ... tokenizer=tokenizer, | |
| ... model_init=model_init, | |
| ... data_collator=data_collator, | |
| ... ) | |
| ``` | |
| Call hyperparameter search, get the best trial parameters, backend could be `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"`. direction can be`"minimize"` or `"maximize"`, which indicates whether to optimize greater or lower objective. | |
| You could define your own compute_objective function, if not defined, the default compute_objective will be called, and the sum of eval metric like f1 is returned as objective value. | |
| ```py | |
| >>> best_trial = trainer.hyperparameter_search( | |
| ... direction="maximize", | |
| ... backend="optuna", | |
| ... hp_space=optuna_hp_space, | |
| ... n_trials=20, | |
| ... compute_objective=compute_objective, | |
| ... ) | |
| ``` | |
| ## Hyperparameter search For DDP finetune | |
| Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks. |