Spaces:
Runtime error
Runtime error
| <!--Copyright 2022 The HuggingFace Team. All rights reserved. | |
| Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | |
| the License. You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | |
| an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | |
| specific language governing permissions and limitations under the License. | |
| --> | |
| # Token classification | |
| [[open-in-colab]] | |
| <Youtube id="wVHdVlPScxA"/> | |
| Token classification assigns a label to individual tokens in a sentence. One of the most common token classification tasks is Named Entity Recognition (NER). NER attempts to find a label for each entity in a sentence, such as a person, location, or organization. | |
| This guide will show you how to: | |
| 1. Finetune [DistilBERT](https://huggingface.co/distilbert-base-uncased) on the [WNUT 17](https://huggingface.co/datasets/wnut_17) dataset to detect new entities. | |
| 2. Use your finetuned model for inference. | |
| <Tip> | |
| The task illustrated in this tutorial is supported by the following model architectures: | |
| <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> | |
| [ALBERT](../model_doc/albert), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BioGpt](../model_doc/biogpt), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [ConvBERT](../model_doc/convbert), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [ESM](../model_doc/esm), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [I-BERT](../model_doc/ibert), [LayoutLM](../model_doc/layoutlm), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LiLT](../model_doc/lilt), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [MarkupLM](../model_doc/markuplm), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [Nezha](../model_doc/nezha), [Nyströmformer](../model_doc/nystromformer), [QDQBert](../model_doc/qdqbert), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [SqueezeBERT](../model_doc/squeezebert), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso) | |
| <!--End of the generated tip--> | |
| </Tip> | |
| Before you begin, make sure you have all the necessary libraries installed: | |
| ```bash | |
| pip install transformers datasets evaluate seqeval | |
| ``` | |
| We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login: | |
| ```py | |
| >>> from huggingface_hub import notebook_login | |
| >>> notebook_login() | |
| ``` | |
| ## Load WNUT 17 dataset | |
| Start by loading the WNUT 17 dataset from the 🤗 Datasets library: | |
| ```py | |
| >>> from datasets import load_dataset | |
| >>> wnut = load_dataset("wnut_17") | |
| ``` | |
| Then take a look at an example: | |
| ```py | |
| >>> wnut["train"][0] | |
| {'id': '0', | |
| 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], | |
| 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'] | |
| } | |
| ``` | |
| Each number in `ner_tags` represents an entity. Convert the numbers to their label names to find out what the entities are: | |
| ```py | |
| >>> label_list = wnut["train"].features[f"ner_tags"].feature.names | |
| >>> label_list | |
| [ | |
| "O", | |
| "B-corporation", | |
| "I-corporation", | |
| "B-creative-work", | |
| "I-creative-work", | |
| "B-group", | |
| "I-group", | |
| "B-location", | |
| "I-location", | |
| "B-person", | |
| "I-person", | |
| "B-product", | |
| "I-product", | |
| ] | |
| ``` | |
| The letter that prefixes each `ner_tag` indicates the token position of the entity: | |
| - `B-` indicates the beginning of an entity. | |
| - `I-` indicates a token is contained inside the same entity (for example, the `State` token is a part of an entity like | |
| `Empire State Building`). | |
| - `0` indicates the token doesn't correspond to any entity. | |
| ## Preprocess | |
| <Youtube id="iY2AZYdZAr0"/> | |
| The next step is to load a DistilBERT tokenizer to preprocess the `tokens` field: | |
| ```py | |
| >>> from transformers import AutoTokenizer | |
| >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") | |
| ``` | |
| As you saw in the example `tokens` field above, it looks like the input has already been tokenized. But the input actually hasn't been tokenized yet and you'll need to set `is_split_into_words=True` to tokenize the words into subwords. For example: | |
| ```py | |
| >>> example = wnut["train"][0] | |
| >>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True) | |
| >>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"]) | |
| >>> tokens | |
| ['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]'] | |
| ``` | |
| However, this adds some special tokens `[CLS]` and `[SEP]` and the subword tokenization creates a mismatch between the input and labels. A single word corresponding to a single label may now be split into two subwords. You'll need to realign the tokens and labels by: | |
| 1. Mapping all tokens to their corresponding word with the [`word_ids`](https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.Encoding.word_ids) method. | |
| 2. Assigning the label `-100` to the special tokens `[CLS]` and `[SEP]` so they're ignored by the PyTorch loss function. | |
| 3. Only labeling the first token of a given word. Assign `-100` to other subtokens from the same word. | |
| Here is how you can create a function to realign the tokens and labels, and truncate sequences to be no longer than DistilBERT's maximum input length: | |
| ```py | |
| >>> def tokenize_and_align_labels(examples): | |
| ... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) | |
| ... labels = [] | |
| ... for i, label in enumerate(examples[f"ner_tags"]): | |
| ... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word. | |
| ... previous_word_idx = None | |
| ... label_ids = [] | |
| ... for word_idx in word_ids: # Set the special tokens to -100. | |
| ... if word_idx is None: | |
| ... label_ids.append(-100) | |
| ... elif word_idx != previous_word_idx: # Only label the first token of a given word. | |
| ... label_ids.append(label[word_idx]) | |
| ... else: | |
| ... label_ids.append(-100) | |
| ... previous_word_idx = word_idx | |
| ... labels.append(label_ids) | |
| ... tokenized_inputs["labels"] = labels | |
| ... return tokenized_inputs | |
| ``` | |
| To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] function. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once: | |
| ```py | |
| >>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True) | |
| ``` | |
| Now create a batch of examples using [`DataCollatorWithPadding`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length. | |
| <frameworkcontent> | |
| <pt> | |
| ```py | |
| >>> from transformers import DataCollatorForTokenClassification | |
| >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) | |
| ``` | |
| </pt> | |
| <tf> | |
| ```py | |
| >>> from transformers import DataCollatorForTokenClassification | |
| >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf") | |
| ``` | |
| </tf> | |
| </frameworkcontent> | |
| ## Evaluate | |
| Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [seqeval](https://huggingface.co/spaces/evaluate-metric/seqeval) framework (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric). Seqeval actually produces several scores: precision, recall, F1, and accuracy. | |
| ```py | |
| >>> import evaluate | |
| >>> seqeval = evaluate.load("seqeval") | |
| ``` | |
| Get the NER labels first, and then create a function that passes your true predictions and true labels to [`~evaluate.EvaluationModule.compute`] to calculate the scores: | |
| ```py | |
| >>> import numpy as np | |
| >>> labels = [label_list[i] for i in example[f"ner_tags"]] | |
| >>> def compute_metrics(p): | |
| ... predictions, labels = p | |
| ... predictions = np.argmax(predictions, axis=2) | |
| ... true_predictions = [ | |
| ... [label_list[p] for (p, l) in zip(prediction, label) if l != -100] | |
| ... for prediction, label in zip(predictions, labels) | |
| ... ] | |
| ... true_labels = [ | |
| ... [label_list[l] for (p, l) in zip(prediction, label) if l != -100] | |
| ... for prediction, label in zip(predictions, labels) | |
| ... ] | |
| ... results = seqeval.compute(predictions=true_predictions, references=true_labels) | |
| ... return { | |
| ... "precision": results["overall_precision"], | |
| ... "recall": results["overall_recall"], | |
| ... "f1": results["overall_f1"], | |
| ... "accuracy": results["overall_accuracy"], | |
| ... } | |
| ``` | |
| Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training. | |
| ## Train | |
| Before you start training your model, create a map of the expected ids to their labels with `id2label` and `label2id`: | |
| ```py | |
| >>> id2label = { | |
| ... 0: "O", | |
| ... 1: "B-corporation", | |
| ... 2: "I-corporation", | |
| ... 3: "B-creative-work", | |
| ... 4: "I-creative-work", | |
| ... 5: "B-group", | |
| ... 6: "I-group", | |
| ... 7: "B-location", | |
| ... 8: "I-location", | |
| ... 9: "B-person", | |
| ... 10: "I-person", | |
| ... 11: "B-product", | |
| ... 12: "I-product", | |
| ... } | |
| >>> label2id = { | |
| ... "O": 0, | |
| ... "B-corporation": 1, | |
| ... "I-corporation": 2, | |
| ... "B-creative-work": 3, | |
| ... "I-creative-work": 4, | |
| ... "B-group": 5, | |
| ... "I-group": 6, | |
| ... "B-location": 7, | |
| ... "I-location": 8, | |
| ... "B-person": 9, | |
| ... "I-person": 10, | |
| ... "B-product": 11, | |
| ... "I-product": 12, | |
| ... } | |
| ``` | |
| <frameworkcontent> | |
| <pt> | |
| <Tip> | |
| If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)! | |
| </Tip> | |
| You're ready to start training your model now! Load DistilBERT with [`AutoModelForTokenClassification`] along with the number of expected labels, and the label mappings: | |
| ```py | |
| >>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer | |
| >>> model = AutoModelForTokenClassification.from_pretrained( | |
| ... "distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id | |
| ... ) | |
| ``` | |
| At this point, only three steps remain: | |
| 1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the seqeval scores and save the training checkpoint. | |
| 2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function. | |
| 3. Call [`~Trainer.train`] to finetune your model. | |
| ```py | |
| >>> training_args = TrainingArguments( | |
| ... output_dir="my_awesome_wnut_model", | |
| ... learning_rate=2e-5, | |
| ... per_device_train_batch_size=16, | |
| ... per_device_eval_batch_size=16, | |
| ... num_train_epochs=2, | |
| ... weight_decay=0.01, | |
| ... evaluation_strategy="epoch", | |
| ... save_strategy="epoch", | |
| ... load_best_model_at_end=True, | |
| ... push_to_hub=True, | |
| ... ) | |
| >>> trainer = Trainer( | |
| ... model=model, | |
| ... args=training_args, | |
| ... train_dataset=tokenized_wnut["train"], | |
| ... eval_dataset=tokenized_wnut["test"], | |
| ... tokenizer=tokenizer, | |
| ... data_collator=data_collator, | |
| ... compute_metrics=compute_metrics, | |
| ... ) | |
| >>> trainer.train() | |
| ``` | |
| Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model: | |
| ```py | |
| >>> trainer.push_to_hub() | |
| ``` | |
| </pt> | |
| <tf> | |
| <Tip> | |
| If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)! | |
| </Tip> | |
| To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters: | |
| ```py | |
| >>> from transformers import create_optimizer | |
| >>> batch_size = 16 | |
| >>> num_train_epochs = 3 | |
| >>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs | |
| >>> optimizer, lr_schedule = create_optimizer( | |
| ... init_lr=2e-5, | |
| ... num_train_steps=num_train_steps, | |
| ... weight_decay_rate=0.01, | |
| ... num_warmup_steps=0, | |
| ... ) | |
| ``` | |
| Then you can load DistilBERT with [`TFAutoModelForTokenClassification`] along with the number of expected labels, and the label mappings: | |
| ```py | |
| >>> from transformers import TFAutoModelForTokenClassification | |
| >>> model = TFAutoModelForTokenClassification.from_pretrained( | |
| ... "distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id | |
| ... ) | |
| ``` | |
| Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]: | |
| ```py | |
| >>> tf_train_set = model.prepare_tf_dataset( | |
| ... tokenized_wnut["train"], | |
| ... shuffle=True, | |
| ... batch_size=16, | |
| ... collate_fn=data_collator, | |
| ... ) | |
| >>> tf_validation_set = model.prepare_tf_dataset( | |
| ... tokenized_wnut["validation"], | |
| ... shuffle=False, | |
| ... batch_size=16, | |
| ... collate_fn=data_collator, | |
| ... ) | |
| ``` | |
| Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): | |
| ```py | |
| >>> import tensorflow as tf | |
| >>> model.compile(optimizer=optimizer) | |
| ``` | |
| The last two things to setup before you start training is to compute the seqeval scores from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](../main_classes/keras_callbacks). | |
| Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]: | |
| ```py | |
| >>> from transformers.keras_callbacks import KerasMetricCallback | |
| >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set) | |
| ``` | |
| Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]: | |
| ```py | |
| >>> from transformers.keras_callbacks import PushToHubCallback | |
| >>> push_to_hub_callback = PushToHubCallback( | |
| ... output_dir="my_awesome_wnut_model", | |
| ... tokenizer=tokenizer, | |
| ... ) | |
| ``` | |
| Then bundle your callbacks together: | |
| ```py | |
| >>> callbacks = [metric_callback, push_to_hub_callback] | |
| ``` | |
| Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model: | |
| ```py | |
| >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks) | |
| ``` | |
| Once training is completed, your model is automatically uploaded to the Hub so everyone can use it! | |
| </tf> | |
| </frameworkcontent> | |
| <Tip> | |
| For a more in-depth example of how to finetune a model for token classification, take a look at the corresponding | |
| [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb) | |
| or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). | |
| </Tip> | |
| ## Inference | |
| Great, now that you've finetuned a model, you can use it for inference! | |
| Grab some text you'd like to run inference on: | |
| ```py | |
| >>> text = "The Golden State Warriors are an American professional basketball team based in San Francisco." | |
| ``` | |
| The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for NER with your model, and pass your text to it: | |
| ```py | |
| >>> from transformers import pipeline | |
| >>> classifier = pipeline("ner", model="stevhliu/my_awesome_wnut_model") | |
| >>> classifier(text) | |
| [{'entity': 'B-location', | |
| 'score': 0.42658573, | |
| 'index': 2, | |
| 'word': 'golden', | |
| 'start': 4, | |
| 'end': 10}, | |
| {'entity': 'I-location', | |
| 'score': 0.35856336, | |
| 'index': 3, | |
| 'word': 'state', | |
| 'start': 11, | |
| 'end': 16}, | |
| {'entity': 'B-group', | |
| 'score': 0.3064001, | |
| 'index': 4, | |
| 'word': 'warriors', | |
| 'start': 17, | |
| 'end': 25}, | |
| {'entity': 'B-location', | |
| 'score': 0.65523505, | |
| 'index': 13, | |
| 'word': 'san', | |
| 'start': 80, | |
| 'end': 83}, | |
| {'entity': 'B-location', | |
| 'score': 0.4668663, | |
| 'index': 14, | |
| 'word': 'francisco', | |
| 'start': 84, | |
| 'end': 93}] | |
| ``` | |
| You can also manually replicate the results of the `pipeline` if you'd like: | |
| <frameworkcontent> | |
| <pt> | |
| Tokenize the text and return PyTorch tensors: | |
| ```py | |
| >>> from transformers import AutoTokenizer | |
| >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model") | |
| >>> inputs = tokenizer(text, return_tensors="pt") | |
| ``` | |
| Pass your inputs to the model and return the `logits`: | |
| ```py | |
| >>> from transformers import AutoModelForTokenClassification | |
| >>> model = AutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model") | |
| >>> with torch.no_grad(): | |
| ... logits = model(**inputs).logits | |
| ``` | |
| Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label: | |
| ```py | |
| >>> predictions = torch.argmax(logits, dim=2) | |
| >>> predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]] | |
| >>> predicted_token_class | |
| ['O', | |
| 'O', | |
| 'B-location', | |
| 'I-location', | |
| 'B-group', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'B-location', | |
| 'B-location', | |
| 'O', | |
| 'O'] | |
| ``` | |
| </pt> | |
| <tf> | |
| Tokenize the text and return TensorFlow tensors: | |
| ```py | |
| >>> from transformers import AutoTokenizer | |
| >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_wnut_model") | |
| >>> inputs = tokenizer(text, return_tensors="tf") | |
| ``` | |
| Pass your inputs to the model and return the `logits`: | |
| ```py | |
| >>> from transformers import TFAutoModelForTokenClassification | |
| >>> model = TFAutoModelForTokenClassification.from_pretrained("stevhliu/my_awesome_wnut_model") | |
| >>> logits = model(**inputs).logits | |
| ``` | |
| Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label: | |
| ```py | |
| >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) | |
| >>> predicted_token_class = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] | |
| >>> predicted_token_class | |
| ['O', | |
| 'O', | |
| 'B-location', | |
| 'I-location', | |
| 'B-group', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'O', | |
| 'B-location', | |
| 'B-location', | |
| 'O', | |
| 'O'] | |
| ``` | |
| </tf> | |
| </frameworkcontent> | |