Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 HuggingFace Inc.. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import logging | |
| import os | |
| import sys | |
| from time import time | |
| from unittest.mock import patch | |
| from transformers.testing_utils import TestCasePlus, require_torch_tpu | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| def get_results(output_dir): | |
| results = {} | |
| path = os.path.join(output_dir, "all_results.json") | |
| if os.path.exists(path): | |
| with open(path, "r") as f: | |
| results = json.load(f) | |
| else: | |
| raise ValueError(f"can't find {path}") | |
| return results | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class TorchXLAExamplesTests(TestCasePlus): | |
| def test_run_glue(self): | |
| import xla_spawn | |
| tmp_dir = self.get_auto_remove_tmp_dir() | |
| testargs = f""" | |
| ./examples/pytorch/text-classification/run_glue.py | |
| --num_cores=8 | |
| ./examples/pytorch/text-classification/run_glue.py | |
| --model_name_or_path distilbert-base-uncased | |
| --output_dir {tmp_dir} | |
| --overwrite_output_dir | |
| --train_file ./tests/fixtures/tests_samples/MRPC/train.csv | |
| --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv | |
| --do_train | |
| --do_eval | |
| --debug tpu_metrics_debug | |
| --per_device_train_batch_size=2 | |
| --per_device_eval_batch_size=1 | |
| --learning_rate=1e-4 | |
| --max_steps=10 | |
| --warmup_steps=2 | |
| --seed=42 | |
| --max_seq_length=128 | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| start = time() | |
| xla_spawn.main() | |
| end = time() | |
| result = get_results(tmp_dir) | |
| self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
| # Assert that the script takes less than 500 seconds to make sure it doesn't hang. | |
| self.assertLess(end - start, 500) | |
| def test_trainer_tpu(self): | |
| import xla_spawn | |
| testargs = """ | |
| ./tests/test_trainer_tpu.py | |
| --num_cores=8 | |
| ./tests/test_trainer_tpu.py | |
| """.split() | |
| with patch.object(sys, "argv", testargs): | |
| xla_spawn.main() | |