Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Union | |
| import tqdm | |
| from filelock import FileLock | |
| from transformers import ( | |
| BartTokenizer, | |
| BartTokenizerFast, | |
| DataProcessor, | |
| PreTrainedTokenizer, | |
| RobertaTokenizer, | |
| RobertaTokenizerFast, | |
| XLMRobertaTokenizer, | |
| is_tf_available, | |
| is_torch_available, | |
| ) | |
| logger = logging.getLogger(__name__) | |
| class InputExample: | |
| """ | |
| A single training/test example for simple sequence classification. | |
| Args: | |
| guid: Unique id for the example. | |
| text_a: string. The untokenized text of the first sequence. For single | |
| sequence tasks, only this sequence must be specified. | |
| text_b: (Optional) string. The untokenized text of the second sequence. | |
| Only must be specified for sequence pair tasks. | |
| label: (Optional) string. The label of the example. This should be | |
| specified for train and dev examples, but not for test examples. | |
| pairID: (Optional) string. Unique identifier for the pair of sentences. | |
| """ | |
| guid: str | |
| text_a: str | |
| text_b: Optional[str] = None | |
| label: Optional[str] = None | |
| pairID: Optional[str] = None | |
| class InputFeatures: | |
| """ | |
| A single set of features of data. | |
| Property names are the same names as the corresponding inputs to a model. | |
| Args: | |
| input_ids: Indices of input sequence tokens in the vocabulary. | |
| attention_mask: Mask to avoid performing attention on padding token indices. | |
| Mask values selected in ``[0, 1]``: | |
| Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. | |
| token_type_ids: (Optional) Segment token indices to indicate first and second | |
| portions of the inputs. Only some models use them. | |
| label: (Optional) Label corresponding to the input. Int for classification problems, | |
| float for regression problems. | |
| pairID: (Optional) Unique identifier for the pair of sentences. | |
| """ | |
| input_ids: List[int] | |
| attention_mask: Optional[List[int]] = None | |
| token_type_ids: Optional[List[int]] = None | |
| label: Optional[Union[int, float]] = None | |
| pairID: Optional[int] = None | |
| if is_torch_available(): | |
| import torch | |
| from torch.utils.data import Dataset | |
| class HansDataset(Dataset): | |
| """ | |
| This will be superseded by a framework-agnostic approach | |
| soon. | |
| """ | |
| features: List[InputFeatures] | |
| def __init__( | |
| self, | |
| data_dir: str, | |
| tokenizer: PreTrainedTokenizer, | |
| task: str, | |
| max_seq_length: Optional[int] = None, | |
| overwrite_cache=False, | |
| evaluate: bool = False, | |
| ): | |
| processor = hans_processors[task]() | |
| cached_features_file = os.path.join( | |
| data_dir, | |
| "cached_{}_{}_{}_{}".format( | |
| "dev" if evaluate else "train", | |
| tokenizer.__class__.__name__, | |
| str(max_seq_length), | |
| task, | |
| ), | |
| ) | |
| label_list = processor.get_labels() | |
| if tokenizer.__class__ in ( | |
| RobertaTokenizer, | |
| RobertaTokenizerFast, | |
| XLMRobertaTokenizer, | |
| BartTokenizer, | |
| BartTokenizerFast, | |
| ): | |
| # HACK(label indices are swapped in RoBERTa pretrained model) | |
| label_list[1], label_list[2] = label_list[2], label_list[1] | |
| self.label_list = label_list | |
| # Make sure only the first process in distributed training processes the dataset, | |
| # and the others will use the cache. | |
| lock_path = cached_features_file + ".lock" | |
| with FileLock(lock_path): | |
| if os.path.exists(cached_features_file) and not overwrite_cache: | |
| logger.info(f"Loading features from cached file {cached_features_file}") | |
| self.features = torch.load(cached_features_file) | |
| else: | |
| logger.info(f"Creating features from dataset file at {data_dir}") | |
| examples = ( | |
| processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) | |
| ) | |
| logger.info("Training examples: %s", len(examples)) | |
| self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) | |
| logger.info("Saving features into cached file %s", cached_features_file) | |
| torch.save(self.features, cached_features_file) | |
| def __len__(self): | |
| return len(self.features) | |
| def __getitem__(self, i) -> InputFeatures: | |
| return self.features[i] | |
| def get_labels(self): | |
| return self.label_list | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| class TFHansDataset: | |
| """ | |
| This will be superseded by a framework-agnostic approach | |
| soon. | |
| """ | |
| features: List[InputFeatures] | |
| def __init__( | |
| self, | |
| data_dir: str, | |
| tokenizer: PreTrainedTokenizer, | |
| task: str, | |
| max_seq_length: Optional[int] = 128, | |
| overwrite_cache=False, | |
| evaluate: bool = False, | |
| ): | |
| processor = hans_processors[task]() | |
| label_list = processor.get_labels() | |
| if tokenizer.__class__ in ( | |
| RobertaTokenizer, | |
| RobertaTokenizerFast, | |
| XLMRobertaTokenizer, | |
| BartTokenizer, | |
| BartTokenizerFast, | |
| ): | |
| # HACK(label indices are swapped in RoBERTa pretrained model) | |
| label_list[1], label_list[2] = label_list[2], label_list[1] | |
| self.label_list = label_list | |
| examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) | |
| self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) | |
| def gen(): | |
| for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"): | |
| if ex_index % 10000 == 0: | |
| logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
| yield ( | |
| { | |
| "example_id": 0, | |
| "input_ids": ex.input_ids, | |
| "attention_mask": ex.attention_mask, | |
| "token_type_ids": ex.token_type_ids, | |
| }, | |
| ex.label, | |
| ) | |
| self.dataset = tf.data.Dataset.from_generator( | |
| gen, | |
| ( | |
| { | |
| "example_id": tf.int32, | |
| "input_ids": tf.int32, | |
| "attention_mask": tf.int32, | |
| "token_type_ids": tf.int32, | |
| }, | |
| tf.int64, | |
| ), | |
| ( | |
| { | |
| "example_id": tf.TensorShape([]), | |
| "input_ids": tf.TensorShape([None, None]), | |
| "attention_mask": tf.TensorShape([None, None]), | |
| "token_type_ids": tf.TensorShape([None, None]), | |
| }, | |
| tf.TensorShape([]), | |
| ), | |
| ) | |
| def get_dataset(self): | |
| return self.dataset | |
| def __len__(self): | |
| return len(self.features) | |
| def __getitem__(self, i) -> InputFeatures: | |
| return self.features[i] | |
| def get_labels(self): | |
| return self.label_list | |
| class HansProcessor(DataProcessor): | |
| """Processor for the HANS data set.""" | |
| def get_train_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train") | |
| def get_dev_examples(self, data_dir): | |
| """See base class.""" | |
| return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev") | |
| def get_labels(self): | |
| """See base class. | |
| Note that we follow the standard three labels for MNLI | |
| (see :class:`~transformers.data.processors.utils.MnliProcessor`) | |
| but the HANS evaluation groups `contradiction` and `neutral` into `non-entailment` (label 0) while | |
| `entailment` is label 1.""" | |
| return ["contradiction", "entailment", "neutral"] | |
| def _create_examples(self, lines, set_type): | |
| """Creates examples for the training and dev sets.""" | |
| examples = [] | |
| for i, line in enumerate(lines): | |
| if i == 0: | |
| continue | |
| guid = "%s-%s" % (set_type, line[0]) | |
| text_a = line[5] | |
| text_b = line[6] | |
| pairID = line[7][2:] if line[7].startswith("ex") else line[7] | |
| label = line[0] | |
| examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID)) | |
| return examples | |
| def hans_convert_examples_to_features( | |
| examples: List[InputExample], | |
| label_list: List[str], | |
| max_length: int, | |
| tokenizer: PreTrainedTokenizer, | |
| ): | |
| """ | |
| Loads a data file into a list of ``InputFeatures`` | |
| Args: | |
| examples: List of ``InputExamples`` containing the examples. | |
| label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method. | |
| max_length: Maximum example length. | |
| tokenizer: Instance of a tokenizer that will tokenize the examples. | |
| Returns: | |
| A list of task-specific ``InputFeatures`` which can be fed to the model. | |
| """ | |
| label_map = {label: i for i, label in enumerate(label_list)} | |
| features = [] | |
| for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): | |
| if ex_index % 10000 == 0: | |
| logger.info("Writing example %d" % (ex_index)) | |
| inputs = tokenizer( | |
| example.text_a, | |
| example.text_b, | |
| add_special_tokens=True, | |
| max_length=max_length, | |
| padding="max_length", | |
| truncation=True, | |
| return_overflowing_tokens=True, | |
| ) | |
| label = label_map[example.label] if example.label in label_map else 0 | |
| pairID = int(example.pairID) | |
| features.append(InputFeatures(**inputs, label=label, pairID=pairID)) | |
| for i, example in enumerate(examples[:5]): | |
| logger.info("*** Example ***") | |
| logger.info(f"guid: {example}") | |
| logger.info(f"features: {features[i]}") | |
| return features | |
| hans_tasks_num_labels = { | |
| "hans": 3, | |
| } | |
| hans_processors = { | |
| "hans": HansProcessor, | |
| } | |