Spaces:
Runtime error
Runtime error
| """ | |
| coding=utf-8 | |
| Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal | |
| Adapted From Facebook Inc, Detectron2 && Huggingface Co. | |
| Licensed under the Apache License, Version 2.0 (the "License"); | |
| you may not use this file except in compliance with the License. | |
| You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software | |
| distributed under the License is distributed on an "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| See the License for the specific language governing permissions and | |
| limitations under the License.import copy | |
| """ | |
| import itertools | |
| import math | |
| import os | |
| from abc import ABCMeta, abstractmethod | |
| from collections import OrderedDict, namedtuple | |
| from typing import Dict, List, Tuple | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from torch.nn.modules.batchnorm import BatchNorm2d | |
| from torchvision.ops import RoIPool | |
| from torchvision.ops.boxes import batched_nms, nms | |
| from utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint | |
| # other: | |
| def norm_box(boxes, raw_sizes): | |
| if not isinstance(boxes, torch.Tensor): | |
| normalized_boxes = boxes.copy() | |
| else: | |
| normalized_boxes = boxes.clone() | |
| normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1] | |
| normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0] | |
| return normalized_boxes | |
| def pad_list_tensors( | |
| list_tensors, | |
| preds_per_image, | |
| max_detections=None, | |
| return_tensors=None, | |
| padding=None, | |
| pad_value=0, | |
| location=None, | |
| ): | |
| """ | |
| location will always be cpu for np tensors | |
| """ | |
| if location is None: | |
| location = "cpu" | |
| assert return_tensors in {"pt", "np", None} | |
| assert padding in {"max_detections", "max_batch", None} | |
| new = [] | |
| if padding is None: | |
| if return_tensors is None: | |
| return list_tensors | |
| elif return_tensors == "pt": | |
| if not isinstance(list_tensors, torch.Tensor): | |
| return torch.stack(list_tensors).to(location) | |
| else: | |
| return list_tensors.to(location) | |
| else: | |
| if not isinstance(list_tensors, list): | |
| return np.array(list_tensors.to(location)) | |
| else: | |
| return list_tensors.to(location) | |
| if padding == "max_detections": | |
| assert max_detections is not None, "specify max number of detections per batch" | |
| elif padding == "max_batch": | |
| max_detections = max(preds_per_image) | |
| for i in range(len(list_tensors)): | |
| too_small = False | |
| tensor_i = list_tensors.pop(0) | |
| if tensor_i.ndim < 2: | |
| too_small = True | |
| tensor_i = tensor_i.unsqueeze(-1) | |
| assert isinstance(tensor_i, torch.Tensor) | |
| tensor_i = nn.functional.pad( | |
| input=tensor_i, | |
| pad=(0, 0, 0, max_detections - preds_per_image[i]), | |
| mode="constant", | |
| value=pad_value, | |
| ) | |
| if too_small: | |
| tensor_i = tensor_i.squeeze(-1) | |
| if return_tensors is None: | |
| if location == "cpu": | |
| tensor_i = tensor_i.cpu() | |
| tensor_i = tensor_i.tolist() | |
| if return_tensors == "np": | |
| if location == "cpu": | |
| tensor_i = tensor_i.cpu() | |
| tensor_i = tensor_i.numpy() | |
| else: | |
| if location == "cpu": | |
| tensor_i = tensor_i.cpu() | |
| new.append(tensor_i) | |
| if return_tensors == "np": | |
| return np.stack(new, axis=0) | |
| elif return_tensors == "pt" and not isinstance(new, torch.Tensor): | |
| return torch.stack(new, dim=0) | |
| else: | |
| return list_tensors | |
| def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd): | |
| scores = scores[:, :-1] | |
| num_bbox_reg_classes = boxes.shape[1] // 4 | |
| # Convert to Boxes to use the `clip` function ... | |
| boxes = boxes.reshape(-1, 4) | |
| _clip_box(boxes, image_shape) | |
| boxes = boxes.view(-1, num_bbox_reg_classes, 4) # R x C x 4 | |
| # Select max scores | |
| max_scores, max_classes = scores.max(1) # R x C --> R | |
| num_objs = boxes.size(0) | |
| boxes = boxes.view(-1, 4) | |
| idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes | |
| max_boxes = boxes[idxs] # Select max boxes according to the max scores. | |
| # Apply NMS | |
| keep = nms(max_boxes, max_scores, nms_thresh) | |
| keep = keep[:maxd] | |
| if keep.shape[-1] >= mind and keep.shape[-1] <= maxd: | |
| max_boxes, max_scores = max_boxes[keep], max_scores[keep] | |
| classes = max_classes[keep] | |
| return max_boxes, max_scores, classes, keep | |
| else: | |
| return None | |
| # Helper Functions | |
| def _clip_box(tensor, box_size: Tuple[int, int]): | |
| assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!" | |
| h, w = box_size | |
| tensor[:, 0].clamp_(min=0, max=w) | |
| tensor[:, 1].clamp_(min=0, max=h) | |
| tensor[:, 2].clamp_(min=0, max=w) | |
| tensor[:, 3].clamp_(min=0, max=h) | |
| def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor: | |
| widths = box[:, 2] - box[:, 0] | |
| heights = box[:, 3] - box[:, 1] | |
| keep = (widths > threshold) & (heights > threshold) | |
| return keep | |
| def get_norm(norm, out_channels): | |
| if isinstance(norm, str): | |
| if len(norm) == 0: | |
| return None | |
| norm = { | |
| "BN": BatchNorm2d, | |
| "GN": lambda channels: nn.GroupNorm(32, channels), | |
| "nnSyncBN": nn.SyncBatchNorm, # keep for debugging | |
| "": lambda x: x, | |
| }[norm] | |
| return norm(out_channels) | |
| def _create_grid_offsets(size: List[int], stride: int, offset: float, device): | |
| grid_height, grid_width = size | |
| shifts_x = torch.arange( | |
| offset * stride, | |
| grid_width * stride, | |
| step=stride, | |
| dtype=torch.float32, | |
| device=device, | |
| ) | |
| shifts_y = torch.arange( | |
| offset * stride, | |
| grid_height * stride, | |
| step=stride, | |
| dtype=torch.float32, | |
| device=device, | |
| ) | |
| shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) | |
| shift_x = shift_x.reshape(-1) | |
| shift_y = shift_y.reshape(-1) | |
| return shift_x, shift_y | |
| def build_backbone(cfg): | |
| input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)) | |
| norm = cfg.RESNETS.NORM | |
| stem = BasicStem( | |
| in_channels=input_shape.channels, | |
| out_channels=cfg.RESNETS.STEM_OUT_CHANNELS, | |
| norm=norm, | |
| caffe_maxpool=cfg.MODEL.MAX_POOL, | |
| ) | |
| freeze_at = cfg.BACKBONE.FREEZE_AT | |
| if freeze_at >= 1: | |
| for p in stem.parameters(): | |
| p.requires_grad = False | |
| out_features = cfg.RESNETS.OUT_FEATURES | |
| depth = cfg.RESNETS.DEPTH | |
| num_groups = cfg.RESNETS.NUM_GROUPS | |
| width_per_group = cfg.RESNETS.WIDTH_PER_GROUP | |
| bottleneck_channels = num_groups * width_per_group | |
| in_channels = cfg.RESNETS.STEM_OUT_CHANNELS | |
| out_channels = cfg.RESNETS.RES2_OUT_CHANNELS | |
| stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1 | |
| res5_dilation = cfg.RESNETS.RES5_DILATION | |
| assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation) | |
| num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth] | |
| stages = [] | |
| out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features] | |
| max_stage_idx = max(out_stage_idx) | |
| for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)): | |
| dilation = res5_dilation if stage_idx == 5 else 1 | |
| first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2 | |
| stage_kargs = { | |
| "num_blocks": num_blocks_per_stage[idx], | |
| "first_stride": first_stride, | |
| "in_channels": in_channels, | |
| "bottleneck_channels": bottleneck_channels, | |
| "out_channels": out_channels, | |
| "num_groups": num_groups, | |
| "norm": norm, | |
| "stride_in_1x1": stride_in_1x1, | |
| "dilation": dilation, | |
| } | |
| stage_kargs["block_class"] = BottleneckBlock | |
| blocks = ResNet.make_stage(**stage_kargs) | |
| in_channels = out_channels | |
| out_channels *= 2 | |
| bottleneck_channels *= 2 | |
| if freeze_at >= stage_idx: | |
| for block in blocks: | |
| block.freeze() | |
| stages.append(blocks) | |
| return ResNet(stem, stages, out_features=out_features) | |
| def find_top_rpn_proposals( | |
| proposals, | |
| pred_objectness_logits, | |
| images, | |
| image_sizes, | |
| nms_thresh, | |
| pre_nms_topk, | |
| post_nms_topk, | |
| min_box_side_len, | |
| training, | |
| ): | |
| """Args: | |
| proposals (list[Tensor]): (L, N, Hi*Wi*A, 4). | |
| pred_objectness_logits: tensors of length L. | |
| nms_thresh (float): IoU threshold to use for NMS | |
| pre_nms_topk (int): before nms | |
| post_nms_topk (int): after nms | |
| min_box_side_len (float): minimum proposal box side | |
| training (bool): True if proposals are to be used in training, | |
| Returns: | |
| results (List[Dict]): stores post_nms_topk object proposals for image i. | |
| """ | |
| num_images = len(images) | |
| device = proposals[0].device | |
| # 1. Select top-k anchor for every level and every image | |
| topk_scores = [] # #lvl Tensor, each of shape N x topk | |
| topk_proposals = [] | |
| level_ids = [] # #lvl Tensor, each of shape (topk,) | |
| batch_idx = torch.arange(num_images, device=device) | |
| for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits): | |
| Hi_Wi_A = logits_i.shape[1] | |
| num_proposals_i = min(pre_nms_topk, Hi_Wi_A) | |
| # sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812) | |
| # topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) | |
| logits_i, idx = logits_i.sort(descending=True, dim=1) | |
| topk_scores_i = logits_i[batch_idx, :num_proposals_i] | |
| topk_idx = idx[batch_idx, :num_proposals_i] | |
| # each is N x topk | |
| topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 | |
| topk_proposals.append(topk_proposals_i) | |
| topk_scores.append(topk_scores_i) | |
| level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device)) | |
| # 2. Concat all levels together | |
| topk_scores = torch.cat(topk_scores, dim=1) | |
| topk_proposals = torch.cat(topk_proposals, dim=1) | |
| level_ids = torch.cat(level_ids, dim=0) | |
| # if I change to batched_nms, I wonder if this will make a difference | |
| # 3. For each image, run a per-level NMS, and choose topk results. | |
| results = [] | |
| for n, image_size in enumerate(image_sizes): | |
| boxes = topk_proposals[n] | |
| scores_per_img = topk_scores[n] | |
| # I will have to take a look at the boxes clip method | |
| _clip_box(boxes, image_size) | |
| # filter empty boxes | |
| keep = _nonempty_boxes(boxes, threshold=min_box_side_len) | |
| lvl = level_ids | |
| if keep.sum().item() != len(boxes): | |
| boxes, scores_per_img, lvl = ( | |
| boxes[keep], | |
| scores_per_img[keep], | |
| level_ids[keep], | |
| ) | |
| keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh) | |
| keep = keep[:post_nms_topk] | |
| res = (boxes[keep], scores_per_img[keep]) | |
| results.append(res) | |
| # I wonder if it would be possible for me to pad all these things. | |
| return results | |
| def subsample_labels(labels, num_samples, positive_fraction, bg_label): | |
| """ | |
| Returns: | |
| pos_idx, neg_idx (Tensor): | |
| 1D vector of indices. The total length of both is `num_samples` or fewer. | |
| """ | |
| positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1) | |
| negative = torch.nonzero(labels == bg_label).squeeze(1) | |
| num_pos = int(num_samples * positive_fraction) | |
| # protect against not enough positive examples | |
| num_pos = min(positive.numel(), num_pos) | |
| num_neg = num_samples - num_pos | |
| # protect against not enough negative examples | |
| num_neg = min(negative.numel(), num_neg) | |
| # randomly select positive and negative examples | |
| perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] | |
| perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] | |
| pos_idx = positive[perm1] | |
| neg_idx = negative[perm2] | |
| return pos_idx, neg_idx | |
| def add_ground_truth_to_proposals(gt_boxes, proposals): | |
| raise NotImplementedError() | |
| def add_ground_truth_to_proposals_single_image(gt_boxes, proposals): | |
| raise NotImplementedError() | |
| def _fmt_box_list(box_tensor, batch_index: int): | |
| repeated_index = torch.full( | |
| (len(box_tensor), 1), | |
| batch_index, | |
| dtype=box_tensor.dtype, | |
| device=box_tensor.device, | |
| ) | |
| return torch.cat((repeated_index, box_tensor), dim=1) | |
| def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]): | |
| pooler_fmt_boxes = torch.cat( | |
| [_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)], | |
| dim=0, | |
| ) | |
| return pooler_fmt_boxes | |
| def assign_boxes_to_levels( | |
| box_lists: List[torch.Tensor], | |
| min_level: int, | |
| max_level: int, | |
| canonical_box_size: int, | |
| canonical_level: int, | |
| ): | |
| box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists])) | |
| # Eqn.(1) in FPN paper | |
| level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8)) | |
| # clamp level to (min, max), in case the box size is too large or too small | |
| # for the available feature maps | |
| level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level) | |
| return level_assignments.to(torch.int64) - min_level | |
| # Helper Classes | |
| class _NewEmptyTensorOp(torch.autograd.Function): | |
| def forward(ctx, x, new_shape): | |
| ctx.shape = x.shape | |
| return x.new_empty(new_shape) | |
| def backward(ctx, grad): | |
| shape = ctx.shape | |
| return _NewEmptyTensorOp.apply(grad, shape), None | |
| class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])): | |
| def __new__(cls, *, channels=None, height=None, width=None, stride=None): | |
| return super().__new__(cls, channels, height, width, stride) | |
| class Box2BoxTransform(object): | |
| """ | |
| This R-CNN transformation scales the box's width and height | |
| by exp(dw), exp(dh) and shifts a box's center by the offset | |
| (dx * width, dy * height). | |
| """ | |
| def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None): | |
| """ | |
| Args: | |
| weights (4-element tuple): Scaling factors that are applied to the | |
| (dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set | |
| such that the deltas have unit variance; now they are treated as | |
| hyperparameters of the system. | |
| scale_clamp (float): When predicting deltas, the predicted box scaling | |
| factors (dw and dh) are clamped such that they are <= scale_clamp. | |
| """ | |
| self.weights = weights | |
| if scale_clamp is not None: | |
| self.scale_clamp = scale_clamp | |
| else: | |
| """ | |
| Value for clamping large dw and dh predictions. | |
| The heuristic is that we clamp such that dw and dh are no larger | |
| than what would transform a 16px box into a 1000px box | |
| (based on a small anchor, 16px, and a typical image size, 1000px). | |
| """ | |
| self.scale_clamp = math.log(1000.0 / 16) | |
| def get_deltas(self, src_boxes, target_boxes): | |
| """ | |
| Get box regression transformation deltas (dx, dy, dw, dh) that can be used | |
| to transform the `src_boxes` into the `target_boxes`. That is, the relation | |
| ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless | |
| any delta is too large and is clamped). | |
| Args: | |
| src_boxes (Tensor): source boxes, e.g., object proposals | |
| target_boxes (Tensor): target of the transformation, e.g., ground-truth | |
| boxes. | |
| """ | |
| assert isinstance(src_boxes, torch.Tensor), type(src_boxes) | |
| assert isinstance(target_boxes, torch.Tensor), type(target_boxes) | |
| src_widths = src_boxes[:, 2] - src_boxes[:, 0] | |
| src_heights = src_boxes[:, 3] - src_boxes[:, 1] | |
| src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths | |
| src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights | |
| target_widths = target_boxes[:, 2] - target_boxes[:, 0] | |
| target_heights = target_boxes[:, 3] - target_boxes[:, 1] | |
| target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths | |
| target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights | |
| wx, wy, ww, wh = self.weights | |
| dx = wx * (target_ctr_x - src_ctr_x) / src_widths | |
| dy = wy * (target_ctr_y - src_ctr_y) / src_heights | |
| dw = ww * torch.log(target_widths / src_widths) | |
| dh = wh * torch.log(target_heights / src_heights) | |
| deltas = torch.stack((dx, dy, dw, dh), dim=1) | |
| assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!" | |
| return deltas | |
| def apply_deltas(self, deltas, boxes): | |
| """ | |
| Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`. | |
| Args: | |
| deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. | |
| deltas[i] represents k potentially different class-specific | |
| box transformations for the single box boxes[i]. | |
| boxes (Tensor): boxes to transform, of shape (N, 4) | |
| """ | |
| boxes = boxes.to(deltas.dtype) | |
| widths = boxes[:, 2] - boxes[:, 0] | |
| heights = boxes[:, 3] - boxes[:, 1] | |
| ctr_x = boxes[:, 0] + 0.5 * widths | |
| ctr_y = boxes[:, 1] + 0.5 * heights | |
| wx, wy, ww, wh = self.weights | |
| dx = deltas[:, 0::4] / wx | |
| dy = deltas[:, 1::4] / wy | |
| dw = deltas[:, 2::4] / ww | |
| dh = deltas[:, 3::4] / wh | |
| # Prevent sending too large values into torch.exp() | |
| dw = torch.clamp(dw, max=self.scale_clamp) | |
| dh = torch.clamp(dh, max=self.scale_clamp) | |
| pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] | |
| pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] | |
| pred_w = torch.exp(dw) * widths[:, None] | |
| pred_h = torch.exp(dh) * heights[:, None] | |
| pred_boxes = torch.zeros_like(deltas) | |
| pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1 | |
| pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1 | |
| pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2 | |
| pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2 | |
| return pred_boxes | |
| class Matcher(object): | |
| """ | |
| This class assigns to each predicted "element" (e.g., a box) a ground-truth | |
| element. Each predicted element will have exactly zero or one matches; each | |
| ground-truth element may be matched to zero or more predicted elements. | |
| The matching is determined by the MxN match_quality_matrix, that characterizes | |
| how well each (ground-truth, prediction)-pair match each other. For example, | |
| if the elements are boxes, this matrix may contain box intersection-over-union | |
| overlap values. | |
| The matcher returns (a) a vector of length N containing the index of the | |
| ground-truth element m in [0, M) that matches to prediction n in [0, N). | |
| (b) a vector of length N containing the labels for each prediction. | |
| """ | |
| def __init__( | |
| self, | |
| thresholds: List[float], | |
| labels: List[int], | |
| allow_low_quality_matches: bool = False, | |
| ): | |
| """ | |
| Args: | |
| thresholds (list): a list of thresholds used to stratify predictions | |
| into levels. | |
| labels (list): a list of values to label predictions belonging at | |
| each level. A label can be one of {-1, 0, 1} signifying | |
| {ignore, negative class, positive class}, respectively. | |
| allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold. | |
| For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and | |
| thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and | |
| thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives. | |
| """ | |
| thresholds = thresholds[:] | |
| assert thresholds[0] > 0 | |
| thresholds.insert(0, -float("inf")) | |
| thresholds.append(float("inf")) | |
| assert all([low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])]) | |
| assert all([label_i in [-1, 0, 1] for label_i in labels]) | |
| assert len(labels) == len(thresholds) - 1 | |
| self.thresholds = thresholds | |
| self.labels = labels | |
| self.allow_low_quality_matches = allow_low_quality_matches | |
| def __call__(self, match_quality_matrix): | |
| """ | |
| Args: | |
| match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted | |
| elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`). | |
| Returns: | |
| matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M) | |
| match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored | |
| """ | |
| assert match_quality_matrix.dim() == 2 | |
| if match_quality_matrix.numel() == 0: | |
| default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64) | |
| # When no gt boxes exist, we define IOU = 0 and therefore set labels | |
| # to `self.labels[0]`, which usually defaults to background class 0 | |
| # To choose to ignore instead, | |
| # can make labels=[-1,0,-1,1] + set appropriate thresholds | |
| default_match_labels = match_quality_matrix.new_full( | |
| (match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8 | |
| ) | |
| return default_matches, default_match_labels | |
| assert torch.all(match_quality_matrix >= 0) | |
| # match_quality_matrix is M (gt) x N (predicted) | |
| # Max over gt elements (dim 0) to find best gt candidate for each prediction | |
| matched_vals, matches = match_quality_matrix.max(dim=0) | |
| match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8) | |
| for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]): | |
| low_high = (matched_vals >= low) & (matched_vals < high) | |
| match_labels[low_high] = l | |
| if self.allow_low_quality_matches: | |
| self.set_low_quality_matches_(match_labels, match_quality_matrix) | |
| return matches, match_labels | |
| def set_low_quality_matches_(self, match_labels, match_quality_matrix): | |
| """ | |
| Produce additional matches for predictions that have only low-quality matches. | |
| Specifically, for each ground-truth G find the set of predictions that have | |
| maximum overlap with it (including ties); for each prediction in that set, if | |
| it is unmatched, then match it to the ground-truth G. | |
| This function implements the RPN assignment case (i) | |
| in Sec. 3.1.2 of Faster R-CNN. | |
| """ | |
| # For each gt, find the prediction with which it has highest quality | |
| highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) | |
| # Find the highest quality match available, even if it is low, including ties. | |
| # Note that the matches qualities must be positive due to the use of | |
| # `torch.nonzero`. | |
| of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None] | |
| if of_quality_inds.dim() == 0: | |
| (_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1) | |
| else: | |
| (_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1) | |
| match_labels[pred_inds_with_highest_quality] = 1 | |
| class RPNOutputs(object): | |
| def __init__( | |
| self, | |
| box2box_transform, | |
| anchor_matcher, | |
| batch_size_per_image, | |
| positive_fraction, | |
| images, | |
| pred_objectness_logits, | |
| pred_anchor_deltas, | |
| anchors, | |
| boundary_threshold=0, | |
| gt_boxes=None, | |
| smooth_l1_beta=0.0, | |
| ): | |
| """ | |
| Args: | |
| box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations. | |
| anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels. | |
| batch_size_per_image (int): number of proposals to sample when training | |
| positive_fraction (float): target fraction of sampled proposals that should be positive | |
| images (ImageList): :class:`ImageList` instance representing N input images | |
| pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W) | |
| pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi) | |
| anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l | |
| boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training. | |
| gt_boxes (list[Boxes], optional): A list of N elements. | |
| smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored | |
| """ | |
| self.box2box_transform = box2box_transform | |
| self.anchor_matcher = anchor_matcher | |
| self.batch_size_per_image = batch_size_per_image | |
| self.positive_fraction = positive_fraction | |
| self.pred_objectness_logits = pred_objectness_logits | |
| self.pred_anchor_deltas = pred_anchor_deltas | |
| self.anchors = anchors | |
| self.gt_boxes = gt_boxes | |
| self.num_feature_maps = len(pred_objectness_logits) | |
| self.num_images = len(images) | |
| self.boundary_threshold = boundary_threshold | |
| self.smooth_l1_beta = smooth_l1_beta | |
| def _get_ground_truth(self): | |
| raise NotImplementedError() | |
| def predict_proposals(self): | |
| # pred_anchor_deltas: (L, N, ? Hi, Wi) | |
| # anchors:(N, L, -1, B) | |
| # here we loop over specific feature map, NOT images | |
| proposals = [] | |
| anchors = self.anchors.transpose(0, 1) | |
| for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas): | |
| B = anchors_i.size(-1) | |
| N, _, Hi, Wi = pred_anchor_deltas_i.shape | |
| anchors_i = anchors_i.flatten(start_dim=0, end_dim=1) | |
| pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B) | |
| proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i) | |
| # Append feature map proposals with shape (N, Hi*Wi*A, B) | |
| proposals.append(proposals_i.view(N, -1, B)) | |
| proposals = torch.stack(proposals) | |
| return proposals | |
| def predict_objectness_logits(self): | |
| """ | |
| Returns: | |
| pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A). | |
| """ | |
| pred_objectness_logits = [ | |
| # Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A) | |
| score.permute(0, 2, 3, 1).reshape(self.num_images, -1) | |
| for score in self.pred_objectness_logits | |
| ] | |
| return pred_objectness_logits | |
| # Main Classes | |
| class Conv2d(nn.Conv2d): | |
| def __init__(self, *args, **kwargs): | |
| norm = kwargs.pop("norm", None) | |
| activation = kwargs.pop("activation", None) | |
| super().__init__(*args, **kwargs) | |
| self.norm = norm | |
| self.activation = activation | |
| def forward(self, x): | |
| if x.numel() == 0 and self.training: | |
| assert not isinstance(self.norm, nn.SyncBatchNorm) | |
| if x.numel() == 0: | |
| assert not isinstance(self.norm, nn.GroupNorm) | |
| output_shape = [ | |
| (i + 2 * p - (di * (k - 1) + 1)) // s + 1 | |
| for i, p, di, k, s in zip( | |
| x.shape[-2:], | |
| self.padding, | |
| self.dilation, | |
| self.kernel_size, | |
| self.stride, | |
| ) | |
| ] | |
| output_shape = [x.shape[0], self.weight.shape[0]] + output_shape | |
| empty = _NewEmptyTensorOp.apply(x, output_shape) | |
| if self.training: | |
| _dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
| return empty + _dummy | |
| else: | |
| return empty | |
| x = super().forward(x) | |
| if self.norm is not None: | |
| x = self.norm(x) | |
| if self.activation is not None: | |
| x = self.activation(x) | |
| return x | |
| class LastLevelMaxPool(nn.Module): | |
| """ | |
| This module is used in the original FPN to generate a downsampled P6 feature from P5. | |
| """ | |
| def __init__(self): | |
| super().__init__() | |
| self.num_levels = 1 | |
| self.in_feature = "p5" | |
| def forward(self, x): | |
| return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)] | |
| class LastLevelP6P7(nn.Module): | |
| """ | |
| This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature. | |
| """ | |
| def __init__(self, in_channels, out_channels): | |
| super().__init__() | |
| self.num_levels = 2 | |
| self.in_feature = "res5" | |
| self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1) | |
| self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1) | |
| def forward(self, c5): | |
| p6 = self.p6(c5) | |
| p7 = self.p7(nn.functional.relu(p6)) | |
| return [p6, p7] | |
| class BasicStem(nn.Module): | |
| def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False): | |
| super().__init__() | |
| self.conv1 = Conv2d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=7, | |
| stride=2, | |
| padding=3, | |
| bias=False, | |
| norm=get_norm(norm, out_channels), | |
| ) | |
| self.caffe_maxpool = caffe_maxpool | |
| # use pad 1 instead of pad zero | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = nn.functional.relu_(x) | |
| if self.caffe_maxpool: | |
| x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True) | |
| else: | |
| x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1) | |
| return x | |
| def out_channels(self): | |
| return self.conv1.out_channels | |
| def stride(self): | |
| return 4 # = stride 2 conv -> stride 2 max pool | |
| class ResNetBlockBase(nn.Module): | |
| def __init__(self, in_channels, out_channels, stride): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.stride = stride | |
| def freeze(self): | |
| for p in self.parameters(): | |
| p.requires_grad = False | |
| return self | |
| class BottleneckBlock(ResNetBlockBase): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| bottleneck_channels, | |
| stride=1, | |
| num_groups=1, | |
| norm="BN", | |
| stride_in_1x1=False, | |
| dilation=1, | |
| ): | |
| super().__init__(in_channels, out_channels, stride) | |
| if in_channels != out_channels: | |
| self.shortcut = Conv2d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| norm=get_norm(norm, out_channels), | |
| ) | |
| else: | |
| self.shortcut = None | |
| # The original MSRA ResNet models have stride in the first 1x1 conv | |
| # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have | |
| # stride in the 3x3 conv | |
| stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) | |
| self.conv1 = Conv2d( | |
| in_channels, | |
| bottleneck_channels, | |
| kernel_size=1, | |
| stride=stride_1x1, | |
| bias=False, | |
| norm=get_norm(norm, bottleneck_channels), | |
| ) | |
| self.conv2 = Conv2d( | |
| bottleneck_channels, | |
| bottleneck_channels, | |
| kernel_size=3, | |
| stride=stride_3x3, | |
| padding=1 * dilation, | |
| bias=False, | |
| groups=num_groups, | |
| dilation=dilation, | |
| norm=get_norm(norm, bottleneck_channels), | |
| ) | |
| self.conv3 = Conv2d( | |
| bottleneck_channels, | |
| out_channels, | |
| kernel_size=1, | |
| bias=False, | |
| norm=get_norm(norm, out_channels), | |
| ) | |
| def forward(self, x): | |
| out = self.conv1(x) | |
| out = nn.functional.relu_(out) | |
| out = self.conv2(out) | |
| out = nn.functional.relu_(out) | |
| out = self.conv3(out) | |
| if self.shortcut is not None: | |
| shortcut = self.shortcut(x) | |
| else: | |
| shortcut = x | |
| out += shortcut | |
| out = nn.functional.relu_(out) | |
| return out | |
| class Backbone(nn.Module, metaclass=ABCMeta): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self): | |
| pass | |
| def size_divisibility(self): | |
| """ | |
| Some backbones require the input height and width to be divisible by a specific integer. This is | |
| typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match | |
| dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required. | |
| """ | |
| return 0 | |
| def output_shape(self): | |
| return { | |
| name: ShapeSpec( | |
| channels=self._out_feature_channels[name], | |
| stride=self._out_feature_strides[name], | |
| ) | |
| for name in self._out_features | |
| } | |
| def out_features(self): | |
| """deprecated""" | |
| return self._out_features | |
| def out_feature_strides(self): | |
| """deprecated""" | |
| return {f: self._out_feature_strides[f] for f in self._out_features} | |
| def out_feature_channels(self): | |
| """deprecated""" | |
| return {f: self._out_feature_channels[f] for f in self._out_features} | |
| class ResNet(Backbone): | |
| def __init__(self, stem, stages, num_classes=None, out_features=None): | |
| """ | |
| Args: | |
| stem (nn.Module): a stem module | |
| stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`. | |
| num_classes (None or int): if None, will not perform classification. | |
| out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in: | |
| "stem", "linear", or "res2" ... If None, will return the output of the last layer. | |
| """ | |
| super(ResNet, self).__init__() | |
| self.stem = stem | |
| self.num_classes = num_classes | |
| current_stride = self.stem.stride | |
| self._out_feature_strides = {"stem": current_stride} | |
| self._out_feature_channels = {"stem": self.stem.out_channels} | |
| self.stages_and_names = [] | |
| for i, blocks in enumerate(stages): | |
| for block in blocks: | |
| assert isinstance(block, ResNetBlockBase), block | |
| curr_channels = block.out_channels | |
| stage = nn.Sequential(*blocks) | |
| name = "res" + str(i + 2) | |
| self.add_module(name, stage) | |
| self.stages_and_names.append((stage, name)) | |
| self._out_feature_strides[name] = current_stride = int( | |
| current_stride * np.prod([k.stride for k in blocks]) | |
| ) | |
| self._out_feature_channels[name] = blocks[-1].out_channels | |
| if num_classes is not None: | |
| self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
| self.linear = nn.Linear(curr_channels, num_classes) | |
| # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": | |
| # "The 1000-way fully-connected layer is initialized by | |
| # drawing weights from a zero-mean Gaussian with std of 0.01." | |
| nn.init.normal_(self.linear.weight, stddev=0.01) | |
| name = "linear" | |
| if out_features is None: | |
| out_features = [name] | |
| self._out_features = out_features | |
| assert len(self._out_features) | |
| children = [x[0] for x in self.named_children()] | |
| for out_feature in self._out_features: | |
| assert out_feature in children, "Available children: {}".format(", ".join(children)) | |
| def forward(self, x): | |
| outputs = {} | |
| x = self.stem(x) | |
| if "stem" in self._out_features: | |
| outputs["stem"] = x | |
| for stage, name in self.stages_and_names: | |
| x = stage(x) | |
| if name in self._out_features: | |
| outputs[name] = x | |
| if self.num_classes is not None: | |
| x = self.avgpool(x) | |
| x = self.linear(x) | |
| if "linear" in self._out_features: | |
| outputs["linear"] = x | |
| return outputs | |
| def output_shape(self): | |
| return { | |
| name: ShapeSpec( | |
| channels=self._out_feature_channels[name], | |
| stride=self._out_feature_strides[name], | |
| ) | |
| for name in self._out_features | |
| } | |
| def make_stage( | |
| block_class, | |
| num_blocks, | |
| first_stride=None, | |
| *, | |
| in_channels, | |
| out_channels, | |
| **kwargs, | |
| ): | |
| """ | |
| Usually, layers that produce the same feature map spatial size | |
| are defined as one "stage". | |
| Under such definition, stride_per_block[1:] should all be 1. | |
| """ | |
| if first_stride is not None: | |
| assert "stride" not in kwargs and "stride_per_block" not in kwargs | |
| kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1) | |
| blocks = [] | |
| for i in range(num_blocks): | |
| curr_kwargs = {} | |
| for k, v in kwargs.items(): | |
| if k.endswith("_per_block"): | |
| assert ( | |
| len(v) == num_blocks | |
| ), f"Argument '{k}' of make_stage should have the same length as num_blocks={num_blocks}." | |
| newk = k[: -len("_per_block")] | |
| assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!" | |
| curr_kwargs[newk] = v[i] | |
| else: | |
| curr_kwargs[k] = v | |
| blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs)) | |
| in_channels = out_channels | |
| return blocks | |
| class ROIPooler(nn.Module): | |
| """ | |
| Region of interest feature map pooler that supports pooling from one or more | |
| feature maps. | |
| """ | |
| def __init__( | |
| self, | |
| output_size, | |
| scales, | |
| sampling_ratio, | |
| canonical_box_size=224, | |
| canonical_level=4, | |
| ): | |
| super().__init__() | |
| # assumption that stride is a power of 2. | |
| min_level = -math.log2(scales[0]) | |
| max_level = -math.log2(scales[-1]) | |
| # a bunch of testing | |
| assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level)) | |
| assert len(scales) == max_level - min_level + 1, "not pyramid" | |
| assert 0 < min_level and min_level <= max_level | |
| if isinstance(output_size, int): | |
| output_size = (output_size, output_size) | |
| assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int) | |
| if len(scales) > 1: | |
| assert min_level <= canonical_level and canonical_level <= max_level | |
| assert canonical_box_size > 0 | |
| self.output_size = output_size | |
| self.min_level = int(min_level) | |
| self.max_level = int(max_level) | |
| self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales) | |
| self.canonical_level = canonical_level | |
| self.canonical_box_size = canonical_box_size | |
| def forward(self, feature_maps, boxes): | |
| """ | |
| Args: | |
| feature_maps: List[torch.Tensor(N,C,W,H)] | |
| box_lists: list[torch.Tensor]) | |
| Returns: | |
| A tensor of shape(N*B, Channels, output_size, output_size) | |
| """ | |
| x = list(feature_maps.values()) | |
| num_level_assignments = len(self.level_poolers) | |
| assert len(x) == num_level_assignments and len(boxes) == x[0].size(0) | |
| pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes) | |
| if num_level_assignments == 1: | |
| return self.level_poolers[0](x[0], pooler_fmt_boxes) | |
| level_assignments = assign_boxes_to_levels( | |
| boxes, | |
| self.min_level, | |
| self.max_level, | |
| self.canonical_box_size, | |
| self.canonical_level, | |
| ) | |
| num_boxes = len(pooler_fmt_boxes) | |
| num_channels = x[0].shape[1] | |
| output_size = self.output_size[0] | |
| dtype, device = x[0].dtype, x[0].device | |
| output = torch.zeros( | |
| (num_boxes, num_channels, output_size, output_size), | |
| dtype=dtype, | |
| device=device, | |
| ) | |
| for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)): | |
| inds = torch.nonzero(level_assignments == level).squeeze(1) | |
| pooler_fmt_boxes_level = pooler_fmt_boxes[inds] | |
| output[inds] = pooler(x_level, pooler_fmt_boxes_level) | |
| return output | |
| class ROIOutputs(object): | |
| def __init__(self, cfg, training=False): | |
| self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA | |
| self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS) | |
| self.training = training | |
| self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST | |
| self.min_detections = cfg.MIN_DETECTIONS | |
| self.max_detections = cfg.MAX_DETECTIONS | |
| nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST | |
| if not isinstance(nms_thresh, list): | |
| nms_thresh = [nms_thresh] | |
| self.nms_thresh = nms_thresh | |
| def _predict_boxes(self, proposals, box_deltas, preds_per_image): | |
| num_pred = box_deltas.size(0) | |
| B = proposals[0].size(-1) | |
| K = box_deltas.size(-1) // B | |
| box_deltas = box_deltas.view(num_pred * K, B) | |
| proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B) | |
| proposals = proposals.reshape(-1, B) | |
| boxes = self.box2box_transform.apply_deltas(box_deltas, proposals) | |
| return boxes.view(num_pred, K * B).split(preds_per_image, dim=0) | |
| def _predict_objs(self, obj_logits, preds_per_image): | |
| probs = nn.functional.softmax(obj_logits, dim=-1) | |
| probs = probs.split(preds_per_image, dim=0) | |
| return probs | |
| def _predict_attrs(self, attr_logits, preds_per_image): | |
| attr_logits = attr_logits[..., :-1].softmax(-1) | |
| attr_probs, attrs = attr_logits.max(-1) | |
| return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0) | |
| def inference( | |
| self, | |
| obj_logits, | |
| attr_logits, | |
| box_deltas, | |
| pred_boxes, | |
| features, | |
| sizes, | |
| scales=None, | |
| ): | |
| # only the pred boxes is the | |
| preds_per_image = [p.size(0) for p in pred_boxes] | |
| boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image) | |
| obj_scores_all = self._predict_objs(obj_logits, preds_per_image) # list of length N | |
| attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image) | |
| features = features.split(preds_per_image, dim=0) | |
| # fun for each image too, also I can experiment and do multiple images | |
| final_results = [] | |
| zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes) | |
| for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped): | |
| for nms_t in self.nms_thresh: | |
| outputs = do_nms( | |
| boxes, | |
| obj_scores, | |
| size, | |
| self.score_thresh, | |
| nms_t, | |
| self.min_detections, | |
| self.max_detections, | |
| ) | |
| if outputs is not None: | |
| max_boxes, max_scores, classes, ids = outputs | |
| break | |
| if scales is not None: | |
| scale_yx = scales[i] | |
| max_boxes[:, 0::2] *= scale_yx[1] | |
| max_boxes[:, 1::2] *= scale_yx[0] | |
| final_results.append( | |
| ( | |
| max_boxes, | |
| classes, | |
| max_scores, | |
| attrs[ids], | |
| attr_probs[ids], | |
| features[i][ids], | |
| ) | |
| ) | |
| boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results)) | |
| return boxes, classes, class_probs, attrs, attr_probs, roi_features | |
| def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes): | |
| pass | |
| def __call__( | |
| self, | |
| obj_logits, | |
| attr_logits, | |
| box_deltas, | |
| pred_boxes, | |
| features, | |
| sizes, | |
| scales=None, | |
| ): | |
| if self.training: | |
| raise NotImplementedError() | |
| return self.inference( | |
| obj_logits, | |
| attr_logits, | |
| box_deltas, | |
| pred_boxes, | |
| features, | |
| sizes, | |
| scales=scales, | |
| ) | |
| class Res5ROIHeads(nn.Module): | |
| """ | |
| ROIHeads perform all per-region computation in an R-CNN. | |
| It contains logic of cropping the regions, extract per-region features | |
| (by the res-5 block in this case), and make per-region predictions. | |
| """ | |
| def __init__(self, cfg, input_shape): | |
| super().__init__() | |
| self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE | |
| self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION | |
| self.in_features = cfg.ROI_HEADS.IN_FEATURES | |
| self.num_classes = cfg.ROI_HEADS.NUM_CLASSES | |
| self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT | |
| self.feature_strides = {k: v.stride for k, v in input_shape.items()} | |
| self.feature_channels = {k: v.channels for k, v in input_shape.items()} | |
| self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG | |
| self.stage_channel_factor = 2**3 # res5 is 8x res2 | |
| self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor | |
| # self.proposal_matcher = Matcher( | |
| # cfg.ROI_HEADS.IOU_THRESHOLDS, | |
| # cfg.ROI_HEADS.IOU_LABELS, | |
| # allow_low_quality_matches=False, | |
| # ) | |
| pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION | |
| pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],) | |
| sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO | |
| res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE | |
| use_attr = cfg.ROI_BOX_HEAD.ATTR | |
| num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS | |
| self.pooler = ROIPooler( | |
| output_size=pooler_resolution, | |
| scales=pooler_scales, | |
| sampling_ratio=sampling_ratio, | |
| ) | |
| self.res5 = self._build_res5_block(cfg) | |
| if not res5_halve: | |
| """ | |
| Modifications for VG in RoI heads: | |
| 1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1 | |
| 2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2) | |
| """ | |
| self.res5[0].conv1.stride = (1, 1) | |
| self.res5[0].shortcut.stride = (1, 1) | |
| for i in range(3): | |
| self.res5[i].conv2.padding = (2, 2) | |
| self.res5[i].conv2.dilation = (2, 2) | |
| self.box_predictor = FastRCNNOutputLayers( | |
| self.out_channels, | |
| self.num_classes, | |
| self.cls_agnostic_bbox_reg, | |
| use_attr=use_attr, | |
| num_attrs=num_attrs, | |
| ) | |
| def _build_res5_block(self, cfg): | |
| stage_channel_factor = self.stage_channel_factor # res5 is 8x res2 | |
| num_groups = cfg.RESNETS.NUM_GROUPS | |
| width_per_group = cfg.RESNETS.WIDTH_PER_GROUP | |
| bottleneck_channels = num_groups * width_per_group * stage_channel_factor | |
| out_channels = self.out_channels | |
| stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1 | |
| norm = cfg.RESNETS.NORM | |
| blocks = ResNet.make_stage( | |
| BottleneckBlock, | |
| 3, | |
| first_stride=2, | |
| in_channels=out_channels // 2, | |
| bottleneck_channels=bottleneck_channels, | |
| out_channels=out_channels, | |
| num_groups=num_groups, | |
| norm=norm, | |
| stride_in_1x1=stride_in_1x1, | |
| ) | |
| return nn.Sequential(*blocks) | |
| def _shared_roi_transform(self, features, boxes): | |
| x = self.pooler(features, boxes) | |
| return self.res5(x) | |
| def forward(self, features, proposal_boxes, gt_boxes=None): | |
| if self.training: | |
| """ | |
| see https://github.com/airsplay/py-bottom-up-attention/\ | |
| blob/master/detectron2/modeling/roi_heads/roi_heads.py | |
| """ | |
| raise NotImplementedError() | |
| assert not proposal_boxes[0].requires_grad | |
| box_features = self._shared_roi_transform(features, proposal_boxes) | |
| feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1 | |
| obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled) | |
| return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled | |
| class AnchorGenerator(nn.Module): | |
| """ | |
| For a set of image sizes and feature maps, computes a set of anchors. | |
| """ | |
| def __init__(self, cfg, input_shape: List[ShapeSpec]): | |
| super().__init__() | |
| sizes = cfg.ANCHOR_GENERATOR.SIZES | |
| aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS | |
| self.strides = [x.stride for x in input_shape] | |
| self.offset = cfg.ANCHOR_GENERATOR.OFFSET | |
| assert 0.0 <= self.offset < 1.0, self.offset | |
| """ | |
| sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i | |
| 1. given in absolute lengths in units of the input image; | |
| 2. they do not dynamically scale if the input image size changes. | |
| aspect_ratios (list[list[float]]) | |
| strides (list[int]): stride of each input feature. | |
| """ | |
| self.num_features = len(self.strides) | |
| self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios)) | |
| self._spacial_feat_dim = 4 | |
| def _calculate_anchors(self, sizes, aspect_ratios): | |
| # If one size (or aspect ratio) is specified and there are multiple feature | |
| # maps, then we "broadcast" anchors of that single size (or aspect ratio) | |
| if len(sizes) == 1: | |
| sizes *= self.num_features | |
| if len(aspect_ratios) == 1: | |
| aspect_ratios *= self.num_features | |
| assert self.num_features == len(sizes) | |
| assert self.num_features == len(aspect_ratios) | |
| cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)] | |
| return cell_anchors | |
| def box_dim(self): | |
| return self._spacial_feat_dim | |
| def num_cell_anchors(self): | |
| """ | |
| Returns: | |
| list[int]: Each int is the number of anchors at every pixel location, on that feature map. | |
| """ | |
| return [len(cell_anchors) for cell_anchors in self.cell_anchors] | |
| def grid_anchors(self, grid_sizes): | |
| anchors = [] | |
| for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors): | |
| shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device) | |
| shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) | |
| anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) | |
| return anchors | |
| def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)): | |
| """ | |
| anchors are continuous geometric rectangles | |
| centered on one feature map point sample. | |
| We can later build the set of anchors | |
| for the entire feature map by tiling these tensors | |
| """ | |
| anchors = [] | |
| for size in sizes: | |
| area = size**2.0 | |
| for aspect_ratio in aspect_ratios: | |
| w = math.sqrt(area / aspect_ratio) | |
| h = aspect_ratio * w | |
| x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0 | |
| anchors.append([x0, y0, x1, y1]) | |
| return nn.Parameter(torch.tensor(anchors)) | |
| def forward(self, features): | |
| """ | |
| Args: | |
| features List[torch.Tensor]: list of feature maps on which to generate anchors. | |
| Returns: | |
| torch.Tensor: a list of #image elements. | |
| """ | |
| num_images = features[0].size(0) | |
| grid_sizes = [feature_map.shape[-2:] for feature_map in features] | |
| anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) | |
| anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps) | |
| return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0) | |
| class RPNHead(nn.Module): | |
| """ | |
| RPN classification and regression heads. Uses a 3x3 conv to produce a shared | |
| hidden state from which one 1x1 conv predicts objectness logits for each anchor | |
| and a second 1x1 conv predicts bounding-box deltas specifying how to deform | |
| each anchor into an object proposal. | |
| """ | |
| def __init__(self, cfg, input_shape: List[ShapeSpec]): | |
| super().__init__() | |
| # Standard RPN is shared across levels: | |
| in_channels = [s.channels for s in input_shape] | |
| assert len(set(in_channels)) == 1, "Each level must have the same channel!" | |
| in_channels = in_channels[0] | |
| anchor_generator = AnchorGenerator(cfg, input_shape) | |
| num_cell_anchors = anchor_generator.num_cell_anchors | |
| box_dim = anchor_generator.box_dim | |
| assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors" | |
| num_cell_anchors = num_cell_anchors[0] | |
| if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1: | |
| hid_channels = in_channels | |
| else: | |
| hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS | |
| # Modifications for VG in RPN (modeling/proposal_generator/rpn.py) | |
| # Use hidden dim instead fo the same dim as Res4 (in_channels) | |
| # 3x3 conv for the hidden representation | |
| self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1) | |
| # 1x1 conv for predicting objectness logits | |
| self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1) | |
| # 1x1 conv for predicting box2box transform deltas | |
| self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1) | |
| for layer in [self.conv, self.objectness_logits, self.anchor_deltas]: | |
| nn.init.normal_(layer.weight, std=0.01) | |
| nn.init.constant_(layer.bias, 0) | |
| def forward(self, features): | |
| """ | |
| Args: | |
| features (list[Tensor]): list of feature maps | |
| """ | |
| pred_objectness_logits = [] | |
| pred_anchor_deltas = [] | |
| for x in features: | |
| t = nn.functional.relu(self.conv(x)) | |
| pred_objectness_logits.append(self.objectness_logits(t)) | |
| pred_anchor_deltas.append(self.anchor_deltas(t)) | |
| return pred_objectness_logits, pred_anchor_deltas | |
| class RPN(nn.Module): | |
| """ | |
| Region Proposal Network, introduced by the Faster R-CNN paper. | |
| """ | |
| def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]): | |
| super().__init__() | |
| self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE | |
| self.in_features = cfg.RPN.IN_FEATURES | |
| self.nms_thresh = cfg.RPN.NMS_THRESH | |
| self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE | |
| self.positive_fraction = cfg.RPN.POSITIVE_FRACTION | |
| self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA | |
| self.loss_weight = cfg.RPN.LOSS_WEIGHT | |
| self.pre_nms_topk = { | |
| True: cfg.RPN.PRE_NMS_TOPK_TRAIN, | |
| False: cfg.RPN.PRE_NMS_TOPK_TEST, | |
| } | |
| self.post_nms_topk = { | |
| True: cfg.RPN.POST_NMS_TOPK_TRAIN, | |
| False: cfg.RPN.POST_NMS_TOPK_TEST, | |
| } | |
| self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH | |
| self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features]) | |
| self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS) | |
| self.anchor_matcher = Matcher( | |
| cfg.RPN.IOU_THRESHOLDS, | |
| cfg.RPN.IOU_LABELS, | |
| allow_low_quality_matches=True, | |
| ) | |
| self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features]) | |
| def training(self, images, image_shapes, features, gt_boxes): | |
| pass | |
| def inference(self, outputs, images, image_shapes, features, gt_boxes=None): | |
| outputs = find_top_rpn_proposals( | |
| outputs.predict_proposals(), | |
| outputs.predict_objectness_logits(), | |
| images, | |
| image_shapes, | |
| self.nms_thresh, | |
| self.pre_nms_topk[self.training], | |
| self.post_nms_topk[self.training], | |
| self.min_box_side_len, | |
| self.training, | |
| ) | |
| results = [] | |
| for img in outputs: | |
| im_boxes, img_box_logits = img | |
| img_box_logits, inds = img_box_logits.sort(descending=True) | |
| im_boxes = im_boxes[inds] | |
| results.append((im_boxes, img_box_logits)) | |
| (proposal_boxes, logits) = tuple(map(list, zip(*results))) | |
| return proposal_boxes, logits | |
| def forward(self, images, image_shapes, features, gt_boxes=None): | |
| """ | |
| Args: | |
| images (torch.Tensor): input images of length `N` | |
| features (dict[str: Tensor]) | |
| gt_instances | |
| """ | |
| # features is dict, key = block level, v = feature_map | |
| features = [features[f] for f in self.in_features] | |
| pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) | |
| anchors = self.anchor_generator(features) | |
| outputs = RPNOutputs( | |
| self.box2box_transform, | |
| self.anchor_matcher, | |
| self.batch_size_per_image, | |
| self.positive_fraction, | |
| images, | |
| pred_objectness_logits, | |
| pred_anchor_deltas, | |
| anchors, | |
| self.boundary_threshold, | |
| gt_boxes, | |
| self.smooth_l1_beta, | |
| ) | |
| # For RPN-only models, the proposals are the final output | |
| if self.training: | |
| raise NotImplementedError() | |
| return self.training(outputs, images, image_shapes, features, gt_boxes) | |
| else: | |
| return self.inference(outputs, images, image_shapes, features, gt_boxes) | |
| class FastRCNNOutputLayers(nn.Module): | |
| """ | |
| Two linear layers for predicting Fast R-CNN outputs: | |
| (1) proposal-to-detection box regression deltas | |
| (2) classification scores | |
| """ | |
| def __init__( | |
| self, | |
| input_size, | |
| num_classes, | |
| cls_agnostic_bbox_reg, | |
| box_dim=4, | |
| use_attr=False, | |
| num_attrs=-1, | |
| ): | |
| """ | |
| Args: | |
| input_size (int): channels, or (channels, height, width) | |
| num_classes (int) | |
| cls_agnostic_bbox_reg (bool) | |
| box_dim (int) | |
| """ | |
| super().__init__() | |
| if not isinstance(input_size, int): | |
| input_size = np.prod(input_size) | |
| # (do + 1 for background class) | |
| self.cls_score = nn.Linear(input_size, num_classes + 1) | |
| num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes | |
| self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) | |
| self.use_attr = use_attr | |
| if use_attr: | |
| """ | |
| Modifications for VG in RoI heads | |
| Embedding: {num_classes + 1} --> {input_size // 8} | |
| Linear: {input_size + input_size // 8} --> {input_size // 4} | |
| Linear: {input_size // 4} --> {num_attrs + 1} | |
| """ | |
| self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8) | |
| self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4) | |
| self.attr_score = nn.Linear(input_size // 4, num_attrs + 1) | |
| nn.init.normal_(self.cls_score.weight, std=0.01) | |
| nn.init.normal_(self.bbox_pred.weight, std=0.001) | |
| for item in [self.cls_score, self.bbox_pred]: | |
| nn.init.constant_(item.bias, 0) | |
| def forward(self, roi_features): | |
| if roi_features.dim() > 2: | |
| roi_features = torch.flatten(roi_features, start_dim=1) | |
| scores = self.cls_score(roi_features) | |
| proposal_deltas = self.bbox_pred(roi_features) | |
| if self.use_attr: | |
| _, max_class = scores.max(-1) # [b, c] --> [b] | |
| cls_emb = self.cls_embedding(max_class) # [b] --> [b, 256] | |
| roi_features = torch.cat([roi_features, cls_emb], -1) # [b, 2048] + [b, 256] --> [b, 2304] | |
| roi_features = self.fc_attr(roi_features) | |
| roi_features = nn.functional.relu(roi_features) | |
| attr_scores = self.attr_score(roi_features) | |
| return scores, attr_scores, proposal_deltas | |
| else: | |
| return scores, proposal_deltas | |
| class GeneralizedRCNN(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.device = torch.device(cfg.MODEL.DEVICE) | |
| self.backbone = build_backbone(cfg) | |
| self.proposal_generator = RPN(cfg, self.backbone.output_shape()) | |
| self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape()) | |
| self.roi_outputs = ROIOutputs(cfg) | |
| self.to(self.device) | |
| def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
| config = kwargs.pop("config", None) | |
| state_dict = kwargs.pop("state_dict", None) | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| from_tf = kwargs.pop("from_tf", False) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| local_files_only = kwargs.pop("local_files_only", False) | |
| use_cdn = kwargs.pop("use_cdn", True) | |
| # Load config if we don't provide a configuration | |
| if not isinstance(config, Config): | |
| config_path = config if config is not None else pretrained_model_name_or_path | |
| # try: | |
| config = Config.from_pretrained( | |
| config_path, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| ) | |
| # Load model | |
| if pretrained_model_name_or_path is not None: | |
| if os.path.isdir(pretrained_model_name_or_path): | |
| if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): | |
| # Load from a PyTorch checkpoint | |
| archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) | |
| else: | |
| raise EnvironmentError( | |
| "Error no file named {} found in directory {} ".format( | |
| WEIGHTS_NAME, | |
| pretrained_model_name_or_path, | |
| ) | |
| ) | |
| elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): | |
| archive_file = pretrained_model_name_or_path | |
| elif os.path.isfile(pretrained_model_name_or_path + ".index"): | |
| assert ( | |
| from_tf | |
| ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( | |
| pretrained_model_name_or_path + ".index" | |
| ) | |
| archive_file = pretrained_model_name_or_path + ".index" | |
| else: | |
| archive_file = hf_bucket_url( | |
| pretrained_model_name_or_path, | |
| filename=WEIGHTS_NAME, | |
| use_cdn=use_cdn, | |
| ) | |
| try: | |
| # Load from URL or cache if already cached | |
| resolved_archive_file = cached_path( | |
| archive_file, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| local_files_only=local_files_only, | |
| ) | |
| if resolved_archive_file is None: | |
| raise EnvironmentError | |
| except EnvironmentError: | |
| msg = f"Can't load weights for '{pretrained_model_name_or_path}'." | |
| raise EnvironmentError(msg) | |
| if resolved_archive_file == archive_file: | |
| print("loading weights file {}".format(archive_file)) | |
| else: | |
| print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) | |
| else: | |
| resolved_archive_file = None | |
| # Instantiate model. | |
| model = cls(config) | |
| if state_dict is None: | |
| try: | |
| try: | |
| state_dict = torch.load(resolved_archive_file, map_location="cpu") | |
| except Exception: | |
| state_dict = load_checkpoint(resolved_archive_file) | |
| except Exception: | |
| raise OSError( | |
| "Unable to load weights from pytorch checkpoint file. " | |
| "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " | |
| ) | |
| missing_keys = [] | |
| unexpected_keys = [] | |
| error_msgs = [] | |
| # Convert old format to new format if needed from a PyTorch state_dict | |
| old_keys = [] | |
| new_keys = [] | |
| for key in state_dict.keys(): | |
| new_key = None | |
| if "gamma" in key: | |
| new_key = key.replace("gamma", "weight") | |
| if "beta" in key: | |
| new_key = key.replace("beta", "bias") | |
| if new_key: | |
| old_keys.append(key) | |
| new_keys.append(new_key) | |
| for old_key, new_key in zip(old_keys, new_keys): | |
| state_dict[new_key] = state_dict.pop(old_key) | |
| # copy state_dict so _load_from_state_dict can modify it | |
| metadata = getattr(state_dict, "_metadata", None) | |
| state_dict = state_dict.copy() | |
| if metadata is not None: | |
| state_dict._metadata = metadata | |
| model_to_load = model | |
| model_to_load.load_state_dict(state_dict) | |
| if model.__class__.__name__ != model_to_load.__class__.__name__: | |
| base_model_state_dict = model_to_load.state_dict().keys() | |
| head_model_state_dict_without_base_prefix = [ | |
| key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() | |
| ] | |
| missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) | |
| if len(unexpected_keys) > 0: | |
| print( | |
| f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" | |
| f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" | |
| f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" | |
| " with another architecture (e.g. initializing a BertForSequenceClassification model from a" | |
| " BertForPreTraining model).\n- This IS NOT expected if you are initializing" | |
| f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" | |
| " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." | |
| ) | |
| else: | |
| print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") | |
| if len(missing_keys) > 0: | |
| print( | |
| f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
| f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" | |
| " TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
| ) | |
| else: | |
| print( | |
| f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" | |
| f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" | |
| f" was trained on, you can already use {model.__class__.__name__} for predictions without further" | |
| " training." | |
| ) | |
| if len(error_msgs) > 0: | |
| raise RuntimeError( | |
| "Error(s) in loading state_dict for {}:\n\t{}".format( | |
| model.__class__.__name__, "\n\t".join(error_msgs) | |
| ) | |
| ) | |
| # Set model in evaluation mode to deactivate DropOut modules by default | |
| model.eval() | |
| return model | |
| def forward( | |
| self, | |
| images, | |
| image_shapes, | |
| gt_boxes=None, | |
| proposals=None, | |
| scales_yx=None, | |
| **kwargs, | |
| ): | |
| """ | |
| kwargs: | |
| max_detections (int), return_tensors {"np", "pt", None}, padding {None, | |
| "max_detections"}, pad_value (int), location = {"cuda", "cpu"} | |
| """ | |
| if self.training: | |
| raise NotImplementedError() | |
| return self.inference( | |
| images=images, | |
| image_shapes=image_shapes, | |
| gt_boxes=gt_boxes, | |
| proposals=proposals, | |
| scales_yx=scales_yx, | |
| **kwargs, | |
| ) | |
| def inference( | |
| self, | |
| images, | |
| image_shapes, | |
| gt_boxes=None, | |
| proposals=None, | |
| scales_yx=None, | |
| **kwargs, | |
| ): | |
| # run images through backbone | |
| original_sizes = image_shapes * scales_yx | |
| features = self.backbone(images) | |
| # generate proposals if none are available | |
| if proposals is None: | |
| proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes) | |
| else: | |
| assert proposals is not None | |
| # pool object features from either gt_boxes, or from proposals | |
| obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes) | |
| # prepare FRCNN Outputs and select top proposals | |
| boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs( | |
| obj_logits=obj_logits, | |
| attr_logits=attr_logits, | |
| box_deltas=box_deltas, | |
| pred_boxes=proposal_boxes, | |
| features=feature_pooled, | |
| sizes=image_shapes, | |
| scales=scales_yx, | |
| ) | |
| # will we pad??? | |
| subset_kwargs = { | |
| "max_detections": kwargs.get("max_detections", None), | |
| "return_tensors": kwargs.get("return_tensors", None), | |
| "pad_value": kwargs.get("pad_value", 0), | |
| "padding": kwargs.get("padding", None), | |
| } | |
| preds_per_image = torch.tensor([p.size(0) for p in boxes]) | |
| boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs) | |
| classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs) | |
| class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs) | |
| attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs) | |
| attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs) | |
| roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs) | |
| subset_kwargs["padding"] = None | |
| preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs) | |
| sizes = pad_list_tensors(image_shapes, None, **subset_kwargs) | |
| normalized_boxes = norm_box(boxes, original_sizes) | |
| return OrderedDict( | |
| { | |
| "obj_ids": classes, | |
| "obj_probs": class_probs, | |
| "attr_ids": attrs, | |
| "attr_probs": attr_probs, | |
| "boxes": boxes, | |
| "sizes": sizes, | |
| "preds_per_image": preds_per_image, | |
| "roi_features": roi_features, | |
| "normalized_boxes": normalized_boxes, | |
| } | |
| ) | |