Spaces:
Runtime error
Runtime error
update chat
Browse files- app.py +189 -92
- multimodal/open_flamingo/chat/conversation.py +486 -0
- temp.py +168 -0
app.py
CHANGED
|
@@ -17,7 +17,7 @@ from PIL import Image
|
|
| 17 |
from huggingface_hub import hf_hub_download, login
|
| 18 |
|
| 19 |
from open_flamingo.src.factory import create_model_and_transforms
|
| 20 |
-
|
| 21 |
|
| 22 |
flamingo, image_processor, tokenizer, vis_embed_size = create_model_and_transforms(
|
| 23 |
"ViT-L-14",
|
|
@@ -49,6 +49,7 @@ if "vision_encoder.logit_scale"in model_state_dict:
|
|
| 49 |
del model_state_dict["vision_encoder.visual.ln_post.weight"]
|
| 50 |
del model_state_dict["vision_encoder.visual.ln_post.bias"]
|
| 51 |
flamingo.load_state_dict(model_state_dict, strict=True)
|
|
|
|
| 52 |
|
| 53 |
def get_outputs(
|
| 54 |
model,
|
|
@@ -176,106 +177,202 @@ def generate(
|
|
| 176 |
return (f"Output:{gen_text}")
|
| 177 |
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
In this demo we showcase the in-context learning and grounding capabilities of the Object-Centric Pretrained model, a large multimodal model. Note that we add two additional demonstrations to the ones presented to improve the demo experience.
|
| 184 |
-
The model is trained on an interleaved mixture of text, images and bounding box and is able to generate text conditioned on sequences of images/text.
|
| 185 |
-
"""
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
with gr.Accordion("See terms and conditions"):
|
| 189 |
-
gr.Markdown(
|
| 190 |
-
"""**Please read the following information carefully before proceeding.**This demo does NOT store any personal information on its users, and it does NOT store user queries.""")
|
| 191 |
-
|
| 192 |
-
with gr.Tab("📷 Image Captioning"):
|
| 193 |
-
with gr.Row():
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
query_image = gr.Image(type="pil")
|
| 197 |
-
with gr.Row():
|
| 198 |
-
chat_input = gr.Textbox(lines=1, label="Chat Input")
|
| 199 |
-
text_output = gr.Textbox(value="Output:", label="Model output")
|
| 200 |
-
|
| 201 |
-
run_btn = gr.Button("Run model")
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
def on_click_fn(img,text): return generate(0, img, text)
|
| 206 |
-
|
| 207 |
-
run_btn.click(on_click_fn, inputs=[query_image,chat_input], outputs=[text_output])
|
| 208 |
-
|
| 209 |
-
with gr.Tab("🦓 Grounding"):
|
| 210 |
-
with gr.Row():
|
| 211 |
-
with gr.Column(scale=1):
|
| 212 |
-
query_image = gr.Image(type="pil")
|
| 213 |
-
with gr.Column(scale=1):
|
| 214 |
-
out_image = gr.Image(type="pil")
|
| 215 |
-
with gr.Row():
|
| 216 |
-
chat_input = gr.Textbox(lines=1, label="Chat Input")
|
| 217 |
-
text_output = gr.Textbox(value="Output:", label="Model output")
|
| 218 |
-
|
| 219 |
-
run_btn = gr.Button("Run model")
|
| 220 |
-
|
| 221 |
|
| 222 |
-
|
| 223 |
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
with gr.Tab("🔢 Counting objects"):
|
| 228 |
-
with gr.Row():
|
| 229 |
-
query_image = gr.Image(type="pil")
|
| 230 |
-
with gr.Row():
|
| 231 |
-
chat_input = gr.Textbox(lines=1, label="Chat Input")
|
| 232 |
-
text_output = gr.Textbox(value="Output:", label="Model output")
|
| 233 |
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
|
| 237 |
-
|
|
|
|
|
|
|
| 238 |
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output])
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
|
|
|
| 248 |
|
| 249 |
-
run_btn = gr.Button("Run model")
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
from huggingface_hub import hf_hub_download, login
|
| 18 |
|
| 19 |
from open_flamingo.src.factory import create_model_and_transforms
|
| 20 |
+
from open_flamingo.chat.conversation import Chat, CONV_VISION
|
| 21 |
|
| 22 |
flamingo, image_processor, tokenizer, vis_embed_size = create_model_and_transforms(
|
| 23 |
"ViT-L-14",
|
|
|
|
| 49 |
del model_state_dict["vision_encoder.visual.ln_post.weight"]
|
| 50 |
del model_state_dict["vision_encoder.visual.ln_post.bias"]
|
| 51 |
flamingo.load_state_dict(model_state_dict, strict=True)
|
| 52 |
+
chat = Chat(flamingo, image_processor, tokenizer, vis_embed_size )
|
| 53 |
|
| 54 |
def get_outputs(
|
| 55 |
model,
|
|
|
|
| 177 |
return (f"Output:{gen_text}")
|
| 178 |
|
| 179 |
|
| 180 |
+
title = """<h1 align="center">Demo of Compositional-VLM</h1>"""
|
| 181 |
+
description = """<h3>This is the demo of Compositional-VLM. Upload your images and start chatting!</h3>"""
|
| 182 |
+
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://compositionalvlm.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://github.com/TsuTikgiau/blip2-llm/blob/release_prepare/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
| 183 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
# TODO show examples below
|
| 186 |
|
| 187 |
+
# ========================================
|
| 188 |
+
# Gradio Setting
|
| 189 |
+
# ========================================
|
| 190 |
|
| 191 |
+
def gradio_reset(chat_state, img_list):
|
| 192 |
+
if chat_state is not None:
|
| 193 |
+
chat_state = []
|
| 194 |
+
if img_list is not None:
|
| 195 |
+
img_list = []
|
| 196 |
+
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first',
|
| 197 |
+
interactive=False), gr.update(
|
| 198 |
+
value="Upload & Start Chat", interactive=True), chat_state, img_list
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
def upload_img(gr_img, text_input, chat_state):
|
| 202 |
+
if gr_img is None:
|
| 203 |
+
return None, None, gr.update(interactive=True), chat_state, None
|
| 204 |
+
chat_state = []
|
| 205 |
+
img_list = []
|
| 206 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 207 |
+
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
|
| 208 |
+
value="Start Chatting", interactive=False), chat_state, img_list
|
| 209 |
|
| 210 |
|
| 211 |
+
def gradio_ask(user_message, chatbot, chat_state):
|
| 212 |
+
if len(user_message) == 0:
|
| 213 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 214 |
|
| 215 |
+
chat.ask(user_message, chat_state)
|
| 216 |
+
chatbot = chatbot + [[user_message, None]]
|
| 217 |
+
return '', chatbot, chat_state
|
| 218 |
|
|
|
|
| 219 |
|
| 220 |
+
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
|
| 221 |
+
llm_message = \
|
| 222 |
+
chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
|
| 223 |
+
max_length=2000)[0]
|
| 224 |
+
|
| 225 |
+
chatbot[-1][1] = llm_message
|
| 226 |
+
return chatbot, chat_state, img_list
|
| 227 |
|
|
|
|
| 228 |
|
| 229 |
+
with gr.Blocks() as demo:
|
| 230 |
+
gr.Markdown(title)
|
| 231 |
+
gr.Markdown(SHARED_UI_WARNING)
|
| 232 |
+
gr.Markdown(description)
|
| 233 |
+
gr.Markdown(article)
|
| 234 |
+
|
| 235 |
+
with gr.Row():
|
| 236 |
+
with gr.Column(scale=0.5):
|
| 237 |
+
image = gr.Image(type="pil")
|
| 238 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
| 239 |
+
clear = gr.Button("Restart")
|
| 240 |
+
|
| 241 |
+
num_beams = gr.Slider(
|
| 242 |
+
minimum=1,
|
| 243 |
+
maximum=5,
|
| 244 |
+
value=1,
|
| 245 |
+
step=1,
|
| 246 |
+
interactive=True,
|
| 247 |
+
label="beam search numbers)",
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
temperature = gr.Slider(
|
| 251 |
+
minimum=0.1,
|
| 252 |
+
maximum=2.0,
|
| 253 |
+
value=1.0,
|
| 254 |
+
step=0.1,
|
| 255 |
+
interactive=True,
|
| 256 |
+
label="Temperature",
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
with gr.Column():
|
| 260 |
+
chat_state = gr.State()
|
| 261 |
+
img_list = gr.State()
|
| 262 |
+
chatbot = gr.Chatbot(label='Compositional-VLM')
|
| 263 |
+
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
|
| 264 |
+
|
| 265 |
+
upload_button.click(upload_img, [image, text_input, chat_state],
|
| 266 |
+
[image, text_input, upload_button, chat_state, img_list])
|
| 267 |
+
|
| 268 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
| 269 |
+
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
| 270 |
+
)
|
| 271 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
|
| 272 |
+
queue=False)
|
| 273 |
+
|
| 274 |
+
demo.launch(enable_queue=True)
|
| 275 |
+
#
|
| 276 |
+
# with gr.Blocks() as demo:
|
| 277 |
+
# gr.Markdown(
|
| 278 |
+
# """
|
| 279 |
+
# 🍜 Object Centric Pretraining Demo
|
| 280 |
+
# In this demo we showcase the in-context learning and grounding capabilities of the Object-Centric Pretrained model, a large multimodal model. Note that we add two additional demonstrations to the ones presented to improve the demo experience.
|
| 281 |
+
# The model is trained on an interleaved mixture of text, images and bounding box and is able to generate text conditioned on sequences of images/text.
|
| 282 |
+
# """
|
| 283 |
+
# )
|
| 284 |
+
#
|
| 285 |
+
# with gr.Accordion("See terms and conditions"):
|
| 286 |
+
# gr.Markdown(
|
| 287 |
+
# """**Please read the following information carefully before proceeding.**This demo does NOT store any personal information on its users, and it does NOT store user queries.""")
|
| 288 |
+
#
|
| 289 |
+
# with gr.Tab("📷 Image Captioning"):
|
| 290 |
+
# with gr.Row():
|
| 291 |
+
#
|
| 292 |
+
#
|
| 293 |
+
# query_image = gr.Image(type="pil")
|
| 294 |
+
# with gr.Row():
|
| 295 |
+
# chat_input = gr.Textbox(lines=1, label="Chat Input")
|
| 296 |
+
# text_output = gr.Textbox(value="Output:", label="Model output")
|
| 297 |
+
#
|
| 298 |
+
# run_btn = gr.Button("Run model")
|
| 299 |
+
#
|
| 300 |
+
#
|
| 301 |
+
#
|
| 302 |
+
# def on_click_fn(img,text): return generate(0, img, text)
|
| 303 |
+
#
|
| 304 |
+
# run_btn.click(on_click_fn, inputs=[query_image,chat_input], outputs=[text_output])
|
| 305 |
+
#
|
| 306 |
+
# with gr.Tab("🦓 Grounding"):
|
| 307 |
+
# with gr.Row():
|
| 308 |
+
# with gr.Column(scale=1):
|
| 309 |
+
# query_image = gr.Image(type="pil")
|
| 310 |
+
# with gr.Column(scale=1):
|
| 311 |
+
# out_image = gr.Image(type="pil")
|
| 312 |
+
# with gr.Row():
|
| 313 |
+
# chat_input = gr.Textbox(lines=1, label="Chat Input")
|
| 314 |
+
# text_output = gr.Textbox(value="Output:", label="Model output")
|
| 315 |
+
#
|
| 316 |
+
# run_btn = gr.Button("Run model")
|
| 317 |
+
#
|
| 318 |
+
#
|
| 319 |
+
# def on_click_fn(img, text): return generate(1, img, text)
|
| 320 |
+
#
|
| 321 |
+
#
|
| 322 |
+
# run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output, out_image])
|
| 323 |
+
#
|
| 324 |
+
# with gr.Tab("🔢 Counting objects"):
|
| 325 |
+
# with gr.Row():
|
| 326 |
+
# query_image = gr.Image(type="pil")
|
| 327 |
+
# with gr.Row():
|
| 328 |
+
# chat_input = gr.Textbox(lines=1, label="Chat Input")
|
| 329 |
+
# text_output = gr.Textbox(value="Output:", label="Model output")
|
| 330 |
+
#
|
| 331 |
+
# run_btn = gr.Button("Run model")
|
| 332 |
+
#
|
| 333 |
+
#
|
| 334 |
+
# def on_click_fn(img,text): return generate(0, img, text)
|
| 335 |
+
#
|
| 336 |
+
#
|
| 337 |
+
# run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output])
|
| 338 |
+
#
|
| 339 |
+
# with gr.Tab("🕵️ Visual Question Answering"):
|
| 340 |
+
# with gr.Row():
|
| 341 |
+
# query_image = gr.Image(type="pil")
|
| 342 |
+
# with gr.Row():
|
| 343 |
+
# question = gr.Textbox(lines=1, label="Question")
|
| 344 |
+
# text_output = gr.Textbox(value="Output:", label="Model output")
|
| 345 |
+
#
|
| 346 |
+
# run_btn = gr.Button("Run model")
|
| 347 |
+
#
|
| 348 |
+
#
|
| 349 |
+
# def on_click_fn(img, txt): return generate(2, img, txt)
|
| 350 |
+
#
|
| 351 |
+
#
|
| 352 |
+
# run_btn.click(
|
| 353 |
+
# on_click_fn, inputs=[query_image, question], outputs=[text_output]
|
| 354 |
+
# )
|
| 355 |
+
#
|
| 356 |
+
# with gr.Tab("🌎 Custom"):
|
| 357 |
+
# gr.Markdown(
|
| 358 |
+
# """### Customize the demonstration by uploading your own images and text samples.
|
| 359 |
+
# ### **Note: Any text prompt you use will be prepended with an 'Output:', so you don't need to include it in your prompt.**"""
|
| 360 |
+
# )
|
| 361 |
+
# with gr.Row():
|
| 362 |
+
# query_image = gr.Image(type="pil")
|
| 363 |
+
# with gr.Row():
|
| 364 |
+
# question = gr.Textbox(lines=1, label="Question")
|
| 365 |
+
# text_output = gr.Textbox(value="Output:", label="Model output")
|
| 366 |
+
#
|
| 367 |
+
# run_btn = gr.Button("Run model")
|
| 368 |
+
#
|
| 369 |
+
#
|
| 370 |
+
# def on_click_fn(img, txt): return generate(2, img, txt)
|
| 371 |
+
#
|
| 372 |
+
#
|
| 373 |
+
# run_btn.click(
|
| 374 |
+
# on_click_fn, inputs=[query_image, question], outputs=[text_output]
|
| 375 |
+
# )
|
| 376 |
+
#
|
| 377 |
+
# demo.queue(concurrency_count=1)
|
| 378 |
+
# demo.launch()
|
multimodal/open_flamingo/chat/conversation.py
ADDED
|
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import time
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
| 8 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
| 9 |
+
|
| 10 |
+
import dataclasses
|
| 11 |
+
from enum import auto, Enum
|
| 12 |
+
from typing import List, Tuple, Any
|
| 13 |
+
|
| 14 |
+
import string
|
| 15 |
+
import cv2
|
| 16 |
+
import gradio as gr
|
| 17 |
+
|
| 18 |
+
from huggingface_hub import hf_hub_download, login
|
| 19 |
+
|
| 20 |
+
from open_flamingo.src.factory import create_model_and_transforms
|
| 21 |
+
|
| 22 |
+
class SeparatorStyle(Enum):
|
| 23 |
+
"""Different separator style."""
|
| 24 |
+
SINGLE = auto()
|
| 25 |
+
TWO = auto()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
@dataclasses.dataclass
|
| 29 |
+
class Conversation:
|
| 30 |
+
"""A class that keeps all conversation history."""
|
| 31 |
+
system: str
|
| 32 |
+
roles: List[str]
|
| 33 |
+
messages: List[List[str]]
|
| 34 |
+
offset: int
|
| 35 |
+
# system_img: List[Image.Image] = []
|
| 36 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
| 37 |
+
sep: str = "###"
|
| 38 |
+
sep2: str = None
|
| 39 |
+
|
| 40 |
+
skip_next: bool = False
|
| 41 |
+
conv_id: Any = None
|
| 42 |
+
|
| 43 |
+
def get_prompt(self):
|
| 44 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
| 45 |
+
ret = self.system + self.sep
|
| 46 |
+
for role, message in self.messages:
|
| 47 |
+
if message:
|
| 48 |
+
ret += role + ": " + message + self.sep
|
| 49 |
+
else:
|
| 50 |
+
ret += role + ":"
|
| 51 |
+
return ret
|
| 52 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
| 53 |
+
seps = [self.sep, self.sep2]
|
| 54 |
+
ret = self.system + seps[0]
|
| 55 |
+
for i, (role, message) in enumerate(self.messages):
|
| 56 |
+
if message:
|
| 57 |
+
ret += role + ": " + message + seps[i % 2]
|
| 58 |
+
else:
|
| 59 |
+
ret += role + ":"
|
| 60 |
+
return ret
|
| 61 |
+
else:
|
| 62 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
| 63 |
+
|
| 64 |
+
def append_message(self, role, message):
|
| 65 |
+
self.messages.append([role, message])
|
| 66 |
+
|
| 67 |
+
def to_gradio_chatbot(self):
|
| 68 |
+
ret = []
|
| 69 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 70 |
+
if i % 2 == 0:
|
| 71 |
+
ret.append([msg, None])
|
| 72 |
+
else:
|
| 73 |
+
ret[-1][-1] = msg
|
| 74 |
+
return ret
|
| 75 |
+
|
| 76 |
+
def copy(self):
|
| 77 |
+
return Conversation(
|
| 78 |
+
system=self.system,
|
| 79 |
+
# system_img=self.system_img,
|
| 80 |
+
roles=self.roles,
|
| 81 |
+
messages=[[x, y] for x, y in self.messages],
|
| 82 |
+
offset=self.offset,
|
| 83 |
+
sep_style=self.sep_style,
|
| 84 |
+
sep=self.sep,
|
| 85 |
+
sep2=self.sep2,
|
| 86 |
+
conv_id=self.conv_id)
|
| 87 |
+
|
| 88 |
+
def dict(self):
|
| 89 |
+
return {
|
| 90 |
+
"system": self.system,
|
| 91 |
+
# "system_img": self.system_img,
|
| 92 |
+
"roles": self.roles,
|
| 93 |
+
"messages": self.messages,
|
| 94 |
+
"offset": self.offset,
|
| 95 |
+
"sep": self.sep,
|
| 96 |
+
"sep2": self.sep2,
|
| 97 |
+
"conv_id": self.conv_id,
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
| 102 |
+
|
| 103 |
+
def __init__(self, stops=[], encounters=1):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.stops = stops
|
| 106 |
+
|
| 107 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
| 108 |
+
for stop in self.stops:
|
| 109 |
+
if torch.all((stop == input_ids[0][-len(stop):])).item():
|
| 110 |
+
return True
|
| 111 |
+
|
| 112 |
+
return False
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
CONV_VISION = Conversation(
|
| 116 |
+
system="Give the following image: <Img>ImageContent</Img>. "
|
| 117 |
+
"You will be able to see the image once I provide it to you. Please answer my questions.",
|
| 118 |
+
roles=("Human", "Assistant"),
|
| 119 |
+
messages=[],
|
| 120 |
+
offset=2,
|
| 121 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 122 |
+
sep="###",
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
def get_outputs(
|
| 126 |
+
model,
|
| 127 |
+
batch_images,
|
| 128 |
+
attention_mask,
|
| 129 |
+
max_generation_length,
|
| 130 |
+
min_generation_length,
|
| 131 |
+
num_beams,
|
| 132 |
+
length_penalty,
|
| 133 |
+
input_ids,
|
| 134 |
+
image_start_index_list=None,
|
| 135 |
+
image_nums=None,
|
| 136 |
+
bad_words_ids=None,
|
| 137 |
+
):
|
| 138 |
+
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
| 139 |
+
with torch.inference_mode():
|
| 140 |
+
outputs = model(
|
| 141 |
+
vision_x=batch_images,
|
| 142 |
+
lang_x=input_ids,
|
| 143 |
+
attention_mask=attention_mask,
|
| 144 |
+
labels=None,
|
| 145 |
+
image_nums=image_nums,
|
| 146 |
+
image_start_index_list=image_start_index_list,
|
| 147 |
+
added_bbox_list=None,
|
| 148 |
+
add_box=False,
|
| 149 |
+
)
|
| 150 |
+
# outputs = model.generate(
|
| 151 |
+
# batch_images,
|
| 152 |
+
# input_ids,
|
| 153 |
+
# attention_mask=attention_mask,
|
| 154 |
+
# max_new_tokens=max_generation_length,
|
| 155 |
+
# min_length=min_generation_length,
|
| 156 |
+
# num_beams=num_beams,
|
| 157 |
+
# length_penalty=length_penalty,
|
| 158 |
+
# image_start_index_list=image_start_index_list,
|
| 159 |
+
# image_nums=image_nums,
|
| 160 |
+
# bad_words_ids=bad_words_ids,
|
| 161 |
+
# )
|
| 162 |
+
|
| 163 |
+
return outputs
|
| 164 |
+
|
| 165 |
+
def generate(
|
| 166 |
+
idx,
|
| 167 |
+
image,
|
| 168 |
+
text,
|
| 169 |
+
image_processor,
|
| 170 |
+
tokenizer,
|
| 171 |
+
flamingo,
|
| 172 |
+
vis_embed_size=256,
|
| 173 |
+
rank=0,
|
| 174 |
+
world_size=1,
|
| 175 |
+
):
|
| 176 |
+
if image is None:
|
| 177 |
+
raise gr.Error("Please upload an image.")
|
| 178 |
+
flamingo.eval()
|
| 179 |
+
loc_token_ids = []
|
| 180 |
+
for i in range(1000):
|
| 181 |
+
loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
|
| 182 |
+
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
| 183 |
+
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
| 184 |
+
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
|
| 185 |
+
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
|
| 186 |
+
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
|
| 187 |
+
|
| 188 |
+
image_ori = image
|
| 189 |
+
image = image.convert("RGB")
|
| 190 |
+
width = image.width
|
| 191 |
+
height = image.height
|
| 192 |
+
image = image.resize((224, 224))
|
| 193 |
+
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 194 |
+
if idx == 1:
|
| 195 |
+
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|><|#object#|> {text.rstrip('.').strip()}<|#endofobject#|><|#visual#|>"]
|
| 196 |
+
bad_words_ids = None
|
| 197 |
+
max_generation_length = 5
|
| 198 |
+
else:
|
| 199 |
+
prompt = [f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text.rstrip('.')}"]
|
| 200 |
+
bad_words_ids = loc_word_ids
|
| 201 |
+
max_generation_length = 300
|
| 202 |
+
encodings = tokenizer(
|
| 203 |
+
prompt,
|
| 204 |
+
padding="longest",
|
| 205 |
+
truncation=True,
|
| 206 |
+
return_tensors="pt",
|
| 207 |
+
max_length=2000,
|
| 208 |
+
)
|
| 209 |
+
input_ids = encodings["input_ids"]
|
| 210 |
+
attention_mask = encodings["attention_mask"]
|
| 211 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
| 212 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
| 213 |
+
image_nums = [1] * len(input_ids)
|
| 214 |
+
outputs = get_outputs(
|
| 215 |
+
model=flamingo,
|
| 216 |
+
batch_images=batch_images,
|
| 217 |
+
attention_mask=attention_mask,
|
| 218 |
+
max_generation_length=max_generation_length,
|
| 219 |
+
min_generation_length=4,
|
| 220 |
+
num_beams=1,
|
| 221 |
+
length_penalty=1.0,
|
| 222 |
+
input_ids=input_ids,
|
| 223 |
+
bad_words_ids=bad_words_ids,
|
| 224 |
+
image_start_index_list=image_start_index_list,
|
| 225 |
+
image_nums=image_nums,
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
boxes = outputs["boxes"]
|
| 229 |
+
scores = outputs["scores"]
|
| 230 |
+
if len(scores) > 0:
|
| 231 |
+
box = boxes[scores.argmax()]/224
|
| 232 |
+
print(f"{box}")
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if len(boxes)>0:
|
| 236 |
+
open_cv_image = np.array(image_ori)
|
| 237 |
+
# Convert RGB to BGR
|
| 238 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
| 239 |
+
box = box*[width,height,width,height]
|
| 240 |
+
# for box in boxes:
|
| 241 |
+
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
| 242 |
+
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
| 243 |
+
return f"Output:{box}", out_image
|
| 244 |
+
else:
|
| 245 |
+
gen_text = tokenizer.batch_decode(outputs)
|
| 246 |
+
return (f"{gen_text}")
|
| 247 |
+
|
| 248 |
+
def preprocess_conv(data):
|
| 249 |
+
conversation = ""
|
| 250 |
+
BEGIN_SIGNAL = "### "
|
| 251 |
+
END_SIGNAL = "\n"
|
| 252 |
+
for idx, d in enumerate(data):
|
| 253 |
+
from_str = d["from"]
|
| 254 |
+
if from_str.lower() == "human":
|
| 255 |
+
from_str = "Human"
|
| 256 |
+
elif from_str.lower() == "gpt":
|
| 257 |
+
from_str = "Assistant"
|
| 258 |
+
else:
|
| 259 |
+
from_str = 'unknown'
|
| 260 |
+
conversation += (BEGIN_SIGNAL + from_str + ": " + d["value"] + END_SIGNAL)
|
| 261 |
+
return conversation
|
| 262 |
+
|
| 263 |
+
class Chat:
|
| 264 |
+
def __init__(self, model, vis_processor, tokenizer, vis_embed_size ):
|
| 265 |
+
self.device = device
|
| 266 |
+
self.model = model
|
| 267 |
+
self.vis_processor = vis_processor
|
| 268 |
+
self.tokenizer = tokenizer
|
| 269 |
+
self.vis_embed_size = vis_embed_size
|
| 270 |
+
self.conv = []
|
| 271 |
+
# stop_words_ids = [torch.tensor([835]).to(self.device),
|
| 272 |
+
# torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
|
| 273 |
+
# self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 274 |
+
|
| 275 |
+
def ask(self, text, conv):
|
| 276 |
+
conv.append(({
|
| 277 |
+
"from": "human",
|
| 278 |
+
"value": text,
|
| 279 |
+
}))
|
| 280 |
+
# if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
| 281 |
+
# and conv.messages[-1][1][-6:] == '</Img>': # last message is image.
|
| 282 |
+
# conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
|
| 283 |
+
# else:
|
| 284 |
+
# conv.append_message(conv.roles[0], text)
|
| 285 |
+
|
| 286 |
+
def answer(self, conv, img_list, max_new_tokens=200, num_beams=5, min_length=1, top_p=0.9,
|
| 287 |
+
repetition_penalty=1.0, length_penalty=1, temperature=1, max_length=2000):
|
| 288 |
+
# conv.append_message(conv.roles[1], None)
|
| 289 |
+
# embs = self.get_context_emb(conv, img_list)
|
| 290 |
+
#
|
| 291 |
+
# # current_max_len = embs.shape[1] + max_new_tokens + 100
|
| 292 |
+
# # begin_idx = max(0, current_max_len - max_length)
|
| 293 |
+
# # embs = embs[:, begin_idx:]
|
| 294 |
+
# outputs = self.model.llama_model.generate(
|
| 295 |
+
# inputs_embeds=embs,
|
| 296 |
+
# max_new_tokens=max_new_tokens,
|
| 297 |
+
# stopping_criteria=self.stopping_criteria,
|
| 298 |
+
# num_beams=num_beams,
|
| 299 |
+
# min_length=min_length,
|
| 300 |
+
# top_p=top_p,
|
| 301 |
+
# repetition_penalty=repetition_penalty,
|
| 302 |
+
# length_penalty=length_penalty,
|
| 303 |
+
# temperature=temperature,
|
| 304 |
+
# )
|
| 305 |
+
# output_token = outputs[0]
|
| 306 |
+
# if output_token[0] == 0:
|
| 307 |
+
# output_token = output_token[1:]
|
| 308 |
+
# output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
|
| 309 |
+
# output_text = output_text.split('###')[0] # remove the stop sign '###'
|
| 310 |
+
# output_text = output_text.split('Assistant:')[-1].strip()
|
| 311 |
+
# conv.messages[-1][1] = output_text
|
| 312 |
+
|
| 313 |
+
media_token_id = self.tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
| 314 |
+
box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
|
| 315 |
+
endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
|
| 316 |
+
endofattr_token_id = self.tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
|
| 317 |
+
endofmedia_token_id = self.tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
| 318 |
+
visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 319 |
+
previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 320 |
+
prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
|
| 321 |
+
size = self.vis_processor.size["shortest_edge"]
|
| 322 |
+
model.eval()
|
| 323 |
+
# "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/cdl/tmp_img/chat_vis/chat19.png"
|
| 324 |
+
image_path = input("Please enter the image path: ")
|
| 325 |
+
image = Image.open(image_path).convert("RGB")
|
| 326 |
+
image = image.resize((size, size))
|
| 327 |
+
print(f"image size: {image.size}")
|
| 328 |
+
batch_images = preprocess_image(img_list[0], self.vis_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0).to("cuda")
|
| 329 |
+
# conversation = []
|
| 330 |
+
human_sentence = None
|
| 331 |
+
conv.append({
|
| 332 |
+
"from": "gpt",
|
| 333 |
+
"value": "",
|
| 334 |
+
})
|
| 335 |
+
# while True:
|
| 336 |
+
# human_sentence = input("### Human: ")
|
| 337 |
+
# if human_sentence == "#end#":
|
| 338 |
+
# break
|
| 339 |
+
# conversation.append({
|
| 340 |
+
# "from": "human",
|
| 341 |
+
# "value": human_sentence,
|
| 342 |
+
# })
|
| 343 |
+
# conversation.append({
|
| 344 |
+
# "from": "gpt",
|
| 345 |
+
# "value": "",
|
| 346 |
+
# })
|
| 347 |
+
text = preprocess_conv(conv).strip()
|
| 348 |
+
caption = f"<|#image#|>{tokenizer.pad_token * self.vis_embed_size}<|#endofimage#|>{text}"
|
| 349 |
+
encodings = tokenizer(
|
| 350 |
+
caption,
|
| 351 |
+
padding="longest",
|
| 352 |
+
truncation=True,
|
| 353 |
+
return_tensors="pt",
|
| 354 |
+
max_length=2000,
|
| 355 |
+
)
|
| 356 |
+
input_ids = encodings["input_ids"].to("cuda")
|
| 357 |
+
attention_mask = encodings["attention_mask"].to("cuda")
|
| 358 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
| 359 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
| 360 |
+
image_nums = [1] * len(input_ids)
|
| 361 |
+
with torch.no_grad() and torch.cuda.amp.autocast(dtype=torch.float16):
|
| 362 |
+
outputs = model.generate(
|
| 363 |
+
batch_images,
|
| 364 |
+
input_ids,
|
| 365 |
+
attention_mask=attention_mask,
|
| 366 |
+
max_new_tokens=100,
|
| 367 |
+
# min_new_tokens=8,
|
| 368 |
+
num_beams=1,
|
| 369 |
+
image_start_index_list=image_start_index_list,
|
| 370 |
+
image_nums=image_nums,
|
| 371 |
+
)
|
| 372 |
+
output_token = outputs[0, input_ids.shape[1]:]
|
| 373 |
+
output_text = tokenizer.decode(output_token, skip_special_tokens=True).strip()
|
| 374 |
+
conv[-1]["value"] = output_text
|
| 375 |
+
# conv.messages[-1][1] = output_text
|
| 376 |
+
print(
|
| 377 |
+
f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}")
|
| 378 |
+
|
| 379 |
+
return output_text, output_token.cpu().numpy()
|
| 380 |
+
|
| 381 |
+
def upload_img(self, image, conv, img_list):
|
| 382 |
+
img_list.append(image)
|
| 383 |
+
# if isinstance(image, str): # is a image path
|
| 384 |
+
# raw_image = Image.open(image).convert('RGB')
|
| 385 |
+
# image = image.resize((224, 224))
|
| 386 |
+
# image = self.vis_processor(raw_image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 387 |
+
# elif isinstance(image, Image.Image):
|
| 388 |
+
# raw_image = image
|
| 389 |
+
# image = image.resize((224, 224))
|
| 390 |
+
# image = self.vis_processor(raw_image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 391 |
+
# elif isinstance(image, torch.Tensor):
|
| 392 |
+
# if len(image.shape) == 3:
|
| 393 |
+
# image = image.unsqueeze(0)
|
| 394 |
+
# # image = image.to(self.device)
|
| 395 |
+
#
|
| 396 |
+
# # image_emb, _ = self.model.encode_img(image)
|
| 397 |
+
# img_list.append(image_emb)
|
| 398 |
+
conv.append_message(conv.roles[0], "<Img><ImageHere></Img>")
|
| 399 |
+
msg = "Received."
|
| 400 |
+
# self.conv.append_message(self.conv.roles[1], msg)
|
| 401 |
+
return msg
|
| 402 |
+
|
| 403 |
+
def get_context_emb(self, conv, img_list):
|
| 404 |
+
prompt = conv.get_prompt()
|
| 405 |
+
prompt_segs = prompt.split('<ImageHere>')
|
| 406 |
+
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
|
| 407 |
+
seg_tokens = [
|
| 408 |
+
self.model.llama_tokenizer(
|
| 409 |
+
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
|
| 410 |
+
# only add bos to the first seg
|
| 411 |
+
for i, seg in enumerate(prompt_segs)
|
| 412 |
+
]
|
| 413 |
+
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
|
| 414 |
+
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
| 415 |
+
mixed_embs = torch.cat(mixed_embs, dim=1)
|
| 416 |
+
return mixed_embs
|
| 417 |
+
|
| 418 |
+
def evaluate_exp(
|
| 419 |
+
model,
|
| 420 |
+
tokenizer,
|
| 421 |
+
image_processor,
|
| 422 |
+
vis_embed_size=None,
|
| 423 |
+
rank=0,
|
| 424 |
+
world_size=1,
|
| 425 |
+
id=0,
|
| 426 |
+
add_visual=True,
|
| 427 |
+
):
|
| 428 |
+
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
| 429 |
+
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
|
| 430 |
+
endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
|
| 431 |
+
endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
|
| 432 |
+
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
| 433 |
+
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 434 |
+
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
| 435 |
+
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
|
| 436 |
+
size = image_processor.size["shortest_edge"]
|
| 437 |
+
model.eval()
|
| 438 |
+
# "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/cdl/tmp_img/chat_vis/chat19.png"
|
| 439 |
+
image_path = input("Please enter the image path: ")
|
| 440 |
+
image = Image.open(image_path).convert("RGB")
|
| 441 |
+
image = image.resize((size, size))
|
| 442 |
+
print(f"image size: {image.size}")
|
| 443 |
+
batch_images = preprocess_image(image, image_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0).to("cuda")
|
| 444 |
+
conversation = []
|
| 445 |
+
human_sentence = None
|
| 446 |
+
while True:
|
| 447 |
+
human_sentence = input("### Human: ")
|
| 448 |
+
if human_sentence == "#end#":
|
| 449 |
+
break
|
| 450 |
+
conversation.append({
|
| 451 |
+
"from": "human",
|
| 452 |
+
"value": human_sentence,
|
| 453 |
+
})
|
| 454 |
+
conversation.append({
|
| 455 |
+
"from": "gpt",
|
| 456 |
+
"value": "",
|
| 457 |
+
})
|
| 458 |
+
text = preprocess_conv(conversation).strip()
|
| 459 |
+
caption = f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{text}"
|
| 460 |
+
encodings = tokenizer(
|
| 461 |
+
caption,
|
| 462 |
+
padding="longest",
|
| 463 |
+
truncation=True,
|
| 464 |
+
return_tensors="pt",
|
| 465 |
+
max_length=2000,
|
| 466 |
+
)
|
| 467 |
+
input_ids = encodings["input_ids"].to("cuda")
|
| 468 |
+
attention_mask = encodings["attention_mask"].to("cuda")
|
| 469 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
| 470 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
| 471 |
+
image_nums = [1] * len(input_ids)
|
| 472 |
+
with torch.no_grad() and torch.cuda.amp.autocast(dtype=torch.float16):
|
| 473 |
+
outputs = model.generate(
|
| 474 |
+
batch_images,
|
| 475 |
+
input_ids,
|
| 476 |
+
attention_mask=attention_mask,
|
| 477 |
+
max_new_tokens=100,
|
| 478 |
+
# min_new_tokens=8,
|
| 479 |
+
num_beams=1,
|
| 480 |
+
image_start_index_list=image_start_index_list,
|
| 481 |
+
image_nums=image_nums,
|
| 482 |
+
)
|
| 483 |
+
print(f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}")
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
|
temp.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.backends.cudnn as cudnn
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from minigpt4.common.config import Config
|
| 11 |
+
from minigpt4.common.dist_utils import get_rank
|
| 12 |
+
from minigpt4.common.registry import registry
|
| 13 |
+
from minigpt4.conversation.conversation import Chat, CONV_VISION
|
| 14 |
+
|
| 15 |
+
# imports modules for registration
|
| 16 |
+
from minigpt4.datasets.builders import *
|
| 17 |
+
from minigpt4.models import *
|
| 18 |
+
from minigpt4.processors import *
|
| 19 |
+
from minigpt4.runners import *
|
| 20 |
+
from minigpt4.tasks import *
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def parse_args():
|
| 24 |
+
parser = argparse.ArgumentParser(description="Demo")
|
| 25 |
+
parser.add_argument("--cfg-path", type=str, default='eval_configs/minigpt4.yaml',
|
| 26 |
+
help="path to configuration file.")
|
| 27 |
+
parser.add_argument(
|
| 28 |
+
"--options",
|
| 29 |
+
nargs="+",
|
| 30 |
+
help="override some settings in the used config, the key-value pair "
|
| 31 |
+
"in xxx=yyy format will be merged into config file (deprecate), "
|
| 32 |
+
"change to --cfg-options instead.",
|
| 33 |
+
)
|
| 34 |
+
args = parser.parse_args()
|
| 35 |
+
return args
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def setup_seeds(config):
|
| 39 |
+
seed = config.run_cfg.seed + get_rank()
|
| 40 |
+
|
| 41 |
+
random.seed(seed)
|
| 42 |
+
np.random.seed(seed)
|
| 43 |
+
torch.manual_seed(seed)
|
| 44 |
+
|
| 45 |
+
cudnn.benchmark = False
|
| 46 |
+
cudnn.deterministic = True
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# ========================================
|
| 50 |
+
# Model Initialization
|
| 51 |
+
# ========================================
|
| 52 |
+
|
| 53 |
+
SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.
|
| 54 |
+
You can duplicate and use it with a paid private GPU.
|
| 55 |
+
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
|
| 56 |
+
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
|
| 57 |
+
'''
|
| 58 |
+
|
| 59 |
+
print('Initializing Chat')
|
| 60 |
+
cfg = Config(parse_args())
|
| 61 |
+
|
| 62 |
+
model_config = cfg.model_cfg
|
| 63 |
+
model_cls = registry.get_model_class(model_config.arch)
|
| 64 |
+
model = model_cls.from_config(model_config).to('cuda:0')
|
| 65 |
+
|
| 66 |
+
vis_processor_cfg = cfg.datasets_cfg.cc_align.vis_processor.train
|
| 67 |
+
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
| 68 |
+
chat = Chat(model, vis_processor)
|
| 69 |
+
print('Initialization Finished')
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# ========================================
|
| 73 |
+
# Gradio Setting
|
| 74 |
+
# ========================================
|
| 75 |
+
|
| 76 |
+
def gradio_reset(chat_state, img_list):
|
| 77 |
+
if chat_state is not None:
|
| 78 |
+
chat_state.messages = []
|
| 79 |
+
if img_list is not None:
|
| 80 |
+
img_list = []
|
| 81 |
+
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first',
|
| 82 |
+
interactive=False), gr.update(
|
| 83 |
+
value="Upload & Start Chat", interactive=True), chat_state, img_list
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def upload_img(gr_img, text_input, chat_state):
|
| 87 |
+
if gr_img is None:
|
| 88 |
+
return None, None, gr.update(interactive=True), chat_state, None
|
| 89 |
+
chat_state = CONV_VISION.copy()
|
| 90 |
+
img_list = []
|
| 91 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 92 |
+
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
|
| 93 |
+
value="Start Chatting", interactive=False), chat_state, img_list
|
| 94 |
+
|
| 95 |
+
def ask(text, conv):
|
| 96 |
+
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
| 97 |
+
and conv.messages[-1][1][-6:] == '</Img>': # last message is image.
|
| 98 |
+
conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
|
| 99 |
+
else:
|
| 100 |
+
conv.append_message(conv.roles[0], text)
|
| 101 |
+
|
| 102 |
+
def gradio_ask(user_message, chatbot, chat_state):
|
| 103 |
+
if len(user_message) == 0:
|
| 104 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 105 |
+
chat.ask(user_message, chat_state)
|
| 106 |
+
chatbot = chatbot + [[user_message, None]]
|
| 107 |
+
return '', chatbot, chat_state
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
|
| 111 |
+
llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature, max_length=2000)[0]
|
| 112 |
+
chatbot[-1][1] = llm_message
|
| 113 |
+
return chatbot, chat_state, img_list
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
title = """<h1 align="center">Demo of Compositional-VLM</h1>"""
|
| 117 |
+
description = """<h3>This is the demo of Compositional-VLM. Upload your images and start chatting!</h3>"""
|
| 118 |
+
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://compositionalvlm.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://github.com/TsuTikgiau/blip2-llm/blob/release_prepare/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
# TODO show examples below
|
| 122 |
+
|
| 123 |
+
with gr.Blocks() as demo:
|
| 124 |
+
gr.Markdown(title)
|
| 125 |
+
gr.Markdown(SHARED_UI_WARNING)
|
| 126 |
+
gr.Markdown(description)
|
| 127 |
+
gr.Markdown(article)
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
with gr.Column(scale=0.5):
|
| 131 |
+
image = gr.Image(type="pil")
|
| 132 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
| 133 |
+
clear = gr.Button("Restart")
|
| 134 |
+
|
| 135 |
+
num_beams = gr.Slider(
|
| 136 |
+
minimum=1,
|
| 137 |
+
maximum=5,
|
| 138 |
+
value=1,
|
| 139 |
+
step=1,
|
| 140 |
+
interactive=True,
|
| 141 |
+
label="beam search numbers)",
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
temperature = gr.Slider(
|
| 145 |
+
minimum=0.1,
|
| 146 |
+
maximum=2.0,
|
| 147 |
+
value=1.0,
|
| 148 |
+
step=0.1,
|
| 149 |
+
interactive=True,
|
| 150 |
+
label="Temperature",
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
with gr.Column():
|
| 154 |
+
chat_state = gr.State()
|
| 155 |
+
img_list = gr.State()
|
| 156 |
+
chatbot = gr.Chatbot(label='Compositional-VLM')
|
| 157 |
+
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
|
| 158 |
+
|
| 159 |
+
upload_button.click(upload_img, [image, text_input, chat_state],
|
| 160 |
+
[image, text_input, upload_button, chat_state, img_list])
|
| 161 |
+
|
| 162 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
| 163 |
+
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
| 164 |
+
)
|
| 165 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
|
| 166 |
+
queue=False)
|
| 167 |
+
|
| 168 |
+
demo.launch(enable_queue=True)
|