Spaces:
Runtime error
Runtime error
| import os | |
| from typing import Dict, Tuple, Union, Optional | |
| from torch.nn import Module | |
| from transformers import AutoModel | |
| def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: | |
| # transformer.word_embeddings 占用1层 | |
| # transformer.final_layernorm 和 lm_head 占用1层 | |
| # transformer.layers 占用 28 层 | |
| # 总共30层分配到num_gpus张卡上 | |
| num_trans_layers = 28 | |
| per_gpu_layers = 30 / num_gpus | |
| # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError | |
| # windows下 model.device 会被设置成 transformer.word_embeddings.device | |
| # linux下 model.device 会被设置成 lm_head.device | |
| # 在调用chat或者stream_chat时,input_ids会被放到model.device上 | |
| # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError | |
| # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 | |
| # 本文件来源于https://github.com/THUDM/ChatGLM-6B/blob/main/utils.py | |
| # 仅此处做少许修改以支持ChatGLM2 | |
| device_map = { | |
| 'transformer.embedding.word_embeddings': 0, | |
| 'transformer.encoder.final_layernorm': 0, | |
| 'transformer.output_layer': 0, | |
| 'transformer.rotary_pos_emb': 0, | |
| 'lm_head': 0 | |
| } | |
| used = 2 | |
| gpu_target = 0 | |
| for i in range(num_trans_layers): | |
| if used >= per_gpu_layers: | |
| gpu_target += 1 | |
| used = 0 | |
| assert gpu_target < num_gpus | |
| device_map[f'transformer.encoder.layers.{i}'] = gpu_target | |
| used += 1 | |
| return device_map | |
| def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2, | |
| device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module: | |
| if num_gpus < 2 and device_map is None: | |
| model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda() | |
| else: | |
| from accelerate import dispatch_model | |
| model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half() | |
| if device_map is None: | |
| device_map = auto_configure_device_map(num_gpus) | |
| model = dispatch_model(model, device_map=device_map) | |
| return model | |