Update app.py
Browse files
app.py
CHANGED
|
@@ -1,67 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
messages.append({"role": "user", "content": val[0]})
|
| 26 |
-
if val[1]:
|
| 27 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 28 |
-
|
| 29 |
-
messages.append({"role": "user", "content": message})
|
| 30 |
-
|
| 31 |
-
response = ""
|
| 32 |
-
|
| 33 |
-
for message in client.chat_completion(
|
| 34 |
-
messages,
|
| 35 |
-
max_tokens=max_tokens,
|
| 36 |
-
stream=True,
|
| 37 |
-
temperature=temperature,
|
| 38 |
-
top_p=top_p,
|
| 39 |
-
):
|
| 40 |
-
token = message.choices[0].delta.content
|
| 41 |
-
|
| 42 |
-
response += token
|
| 43 |
-
yield response
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"""
|
| 47 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 48 |
-
"""
|
| 49 |
-
demo = gr.ChatInterface(
|
| 50 |
-
respond,
|
| 51 |
-
additional_inputs=[
|
| 52 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 53 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 54 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 55 |
-
gr.Slider(
|
| 56 |
-
minimum=0.1,
|
| 57 |
-
maximum=1.0,
|
| 58 |
-
value=0.95,
|
| 59 |
-
step=0.05,
|
| 60 |
-
label="Top-p (nucleus sampling)",
|
| 61 |
-
),
|
| 62 |
-
],
|
| 63 |
)
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# 使用 MiniCPM-3 模型和分词器
|
| 6 |
+
model_name = "IDEA-CCNL/Wenzhong-GPT2-3.5B" # 此为 MiniCPM-3 公开版模型的名称,可以替换成你的模型名称
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# 定义生成回复的函数
|
| 11 |
+
def generate_response(input_text):
|
| 12 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
| 13 |
+
# 为生成模型配置生成参数
|
| 14 |
+
outputs = model.generate(inputs, max_length=200, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95)
|
| 15 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 16 |
+
return response
|
| 17 |
+
|
| 18 |
+
# 使用 Gradio 创建聊天界面
|
| 19 |
+
iface = gr.Interface(
|
| 20 |
+
fn=generate_response,
|
| 21 |
+
inputs="text",
|
| 22 |
+
outputs="text",
|
| 23 |
+
title="MiniCPM-3 中文聊天机器人",
|
| 24 |
+
description="这是一个基于 MiniCPM-3 的简单聊天机器人,可以进行中文对话"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
+
# 启动 Gradio 应用
|
| 28 |
+
iface.launch()
|
|
|