File size: 42,281 Bytes
c724d0c
 
0132ade
7a8bf2f
 
0132ade
 
7a8bf2f
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a8bf2f
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08033d
0132ade
 
e08033d
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08033d
0132ade
 
 
 
 
 
 
 
 
 
e08033d
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75159bc
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75159bc
0132ade
 
 
75159bc
0132ade
 
 
 
 
 
 
 
 
 
 
c724d0c
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c724d0c
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073e326
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c724d0c
0132ade
c724d0c
0132ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c724d0c
0132ade
c724d0c
0132ade
 
 
 
 
7a8bf2f
13ebb90
0132ade
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
# -*- coding: utf-8 -*-
from __future__ import annotations

import os
import time
import uuid
import random
import logging
import hashlib
import re
import json
from typing import List, Optional, Dict, Any, Tuple

import numpy as np
import requests
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException, Query
from pydantic import BaseModel, Field

# ======================================================================================
# Logging
# ======================================================================================
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
LOG = logging.getLogger("remote_indexer")

# ======================================================================================
# ENV (config)
# ======================================================================================

# Ordre des backends d'embeddings. Ex: "deepinfra,hf"
EMB_BACKEND_ORDER = [
    s.strip().lower()
    for s in os.getenv("EMB_BACKEND_ORDER", os.getenv("EMB_BACKEND", "deepinfra,hf")).split(",")
    if s.strip()
]

# --- DeepInfra Embeddings (OpenAI-like) ---
DI_TOKEN   = os.getenv("DEEPINFRA_API_KEY", "").strip()
DI_MODEL   = os.getenv("DEEPINFRA_EMBED_MODEL", "BAAI/bge-m3").strip()
DI_URL     = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/openai/embeddings").strip()
DI_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))

# --- Hugging Face Inference API ---
HF_TOKEN    = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL    = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2").strip()
HF_URL_PIPE = os.getenv("HF_API_URL_PIPELINE", "").strip() or (
    f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}"
)
HF_URL_MODL = os.getenv("HF_API_URL_MODELS", "").strip() or (
    f"https://api-inference.huggingface.co/models/{HF_MODEL}"
)
HF_TIMEOUT  = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
HF_WAIT     = os.getenv("HF_WAIT_FOR_MODEL", "true").lower() in ("1", "true", "yes", "on")

# --- Retries / backoff ---
RETRY_MAX      = int(os.getenv("EMB_RETRY_MAX", "6"))
RETRY_BASE_SEC = float(os.getenv("EMB_RETRY_BASE", "1.6"))
RETRY_JITTER   = float(os.getenv("EMB_RETRY_JITTER", "0.35"))

# --- Vector store (Qdrant / Memory fallback) ---
VECTOR_STORE = os.getenv("VECTOR_STORE", "qdrant").strip().lower()
QDRANT_URL   = os.getenv("QDRANT_URL", "").strip()
QDRANT_API   = os.getenv("QDRANT_API_KEY", "").strip()

# IDs déterministes activés ?
QDRANT_DETERMINISTIC_IDS = os.getenv("QDRANT_DETERMINISTIC_IDS", "true").lower() in ("1","true","yes","on")
QDRANT_ID_MODE = os.getenv("QDRANT_ID_MODE", "uuid").strip().lower()  # uuid|int

# Wipe automatique avant chaque /index (optionnel)
WIPE_BEFORE_INDEX = os.getenv("WIPE_BEFORE_INDEX", "false").lower() in ("1","true","yes","on")

# --- Auth d’API de ce service (simple header) ---
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()

LOG.info(f"Embeddings backend order = {EMB_BACKEND_ORDER}")
LOG.info(f"HF pipeline URL = {HF_URL_PIPE}")
LOG.info(f"HF models   URL = {HF_URL_MODL}")
LOG.info(f"VECTOR_STORE = {VECTOR_STORE}")

if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN:
    LOG.warning("DEEPINFRA_API_KEY manquant — tentatives DeepInfra échoueront.")
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
    LOG.warning("HF_API_TOKEN manquant — tentatives HF échoueront.")

# ======================================================================================
# Vector Stores (Memory + Qdrant)
# ======================================================================================
try:
    from qdrant_client import QdrantClient
    from qdrant_client.http.models import VectorParams, Distance, PointStruct
except Exception:
    QdrantClient = None
    PointStruct = None

class BaseStore:
    def ensure_collection(self, name: str, dim: int): ...
    def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int: ...
    def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]: ...
    def wipe(self, name: str): ...

class MemoryStore(BaseStore):
    """Store en mémoire (volatile) — fallback/tests."""
    def __init__(self):
        self.db: Dict[str, Dict[str, Any]] = {}  # name -> {"vecs":[np.ndarray], "payloads":[dict], "dim":int}

    def ensure_collection(self, name: str, dim: int):
        self.db.setdefault(name, {"vecs": [], "payloads": [], "dim": dim})

    def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int:
        if name not in self.db:
            raise RuntimeError(f"MemoryStore: collection {name} inconnue")
        if len(vectors) != len(payloads):
            raise ValueError("MemoryStore.upsert: tailles vectors/payloads incohérentes")
        self.db[name]["vecs"].extend([np.asarray(v, dtype=np.float32) for v in vectors])
        self.db[name]["payloads"].extend(payloads)
        return len(vectors)

    def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
        if name not in self.db or not self.db[name]["vecs"]:
            return []
        mat = np.vstack(self.db[name]["vecs"]).astype(np.float32)  # [N, dim]
        q = query_vec.reshape(1, -1).astype(np.float32)
        sims = (mat @ q.T).ravel()  # cosine (embeddings normalisés en amont)
        top_idx = np.argsort(-sims)[:top_k]
        out = []
        for i in top_idx:
            pl = dict(self.db[name]["payloads"][i]); pl["_score"] = float(sims[i])
            out.append(pl)
        return out

    def wipe(self, name: str):
        self.db.pop(name, None)

def _stable_point_id_uuid(collection: str, payload: Dict[str, Any]) -> str:
    """
    UUID v5 déterministe: uuid5(NAMESPACE_URL, 'collection|path|chunk|start|end|BLAKE8(text)')
    """
    path  = str(payload.get("path", ""))
    chunk = str(payload.get("chunk", ""))
    start = str(payload.get("start", ""))
    end   = str(payload.get("end", ""))
    text  = payload.get("text", "")
    # hash court du texte pour stabiliser l’empreinte sans tout concaténer
    h = hashlib.blake2b((text or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
    base = f"{collection}|{path}|{chunk}|{start}|{end}|{h}"
    return str(uuid.uuid5(uuid.NAMESPACE_URL, base))

class QdrantStore(BaseStore):
    """Store Qdrant — IDs UUID déterministes (par défaut) ou entiers séquentiels."""
    def __init__(self, url: str, api_key: Optional[str] = None,
                 deterministic_ids: bool = True, id_mode: str = "uuid"):
        if QdrantClient is None or PointStruct is None:
            raise RuntimeError("qdrant_client non disponible")
        self.client = QdrantClient(url=url, api_key=api_key if api_key else None)
        self._next_ids: Dict[str, int] = {}
        self._deterministic = deterministic_ids
        self._id_mode = id_mode if id_mode in ("uuid", "int") else "uuid"

    def _init_next_id(self, name: str):
        try:
            cnt = self.client.count(collection_name=name, exact=True).count
        except Exception:
            cnt = 0
        self._next_ids[name] = int(cnt)

    def ensure_collection(self, name: str, dim: int):
        try:
            self.client.get_collection(name)
        except Exception:
            self.client.create_collection(
                collection_name=name,
                vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
            )
        if name not in self._next_ids:
            self._init_next_id(name)

    def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int:
        if vectors is None or len(vectors) == 0:
            return 0
        if len(vectors) != len(payloads):
            raise ValueError("QdrantStore.upsert: tailles vectors/payloads incohérentes")

        points: List[PointStruct] = []
        added = 0

        if self._deterministic and self._id_mode == "uuid":
            # UUID déterministes => Qdrant Cloud OK, remplace si existe
            seen = set()
            for v, pl in zip(vectors, payloads):
                pid = _stable_point_id_uuid(name, pl)
                if pid in seen:
                    continue  # dédup intra-batch
                seen.add(pid)
                points.append(PointStruct(id=pid,
                                          vector=np.asarray(v, dtype=np.float32).tolist(),
                                          payload=pl))
            if points:
                self.client.upsert(collection_name=name, points=points)
                added = len(points)

        elif self._deterministic and self._id_mode == "int":
            # int déterministes (peu utile si on veut remplacer)
            seen = set()
            for v, pl in zip(vectors, payloads):
                pid_str = _stable_point_id_uuid(name, pl)
                pid_int = uuid.UUID(pid_str).int >> 64
                if pid_int in seen:
                    continue
                seen.add(pid_int)
                points.append(PointStruct(id=int(pid_int),
                                          vector=np.asarray(v, dtype=np.float32).tolist(),
                                          payload=pl))
            if points:
                self.client.upsert(collection_name=name, points=points)
                added = len(points)

        else:
            # IDs séquentiels -> append-only
            if name not in self._next_ids:
                self._init_next_id(name)
            start = self._next_ids[name]
            for i, (v, pl) in enumerate(zip(vectors, payloads)):
                points.append(PointStruct(id=start + i,
                                          vector=np.asarray(v, dtype=np.float32).tolist(),
                                          payload=pl))
            if points:
                self.client.upsert(collection_name=name, points=points)
                added = len(points)
                self._next_ids[name] += added

        LOG.debug(f"QdrantStore.upsert: +{added} points (deterministic={self._deterministic}, mode={self._id_mode})")
        return added

    def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
        qv = query_vec[0].astype(np.float32).tolist() if query_vec.ndim == 2 else query_vec.astype(np.float32).tolist()
        res = self.client.search(collection_name=name, query_vector=qv, limit=int(top_k))
        out = []
        for p in res:
            pl = p.payload or {}
            try:
                pl["_score"] = float(p.score)
            except Exception:
                pl["_score"] = None
            out.append(pl)
        return out

    def wipe(self, name: str):
        try:
            self.client.delete_collection(name)
        except Exception:
            pass
        self._next_ids.pop(name, None)

# Initialisation du store actif
try:
    if VECTOR_STORE == "qdrant" and QDRANT_URL:
        STORE: BaseStore = QdrantStore(
            QDRANT_URL,
            api_key=QDRANT_API if QDRANT_API else None,
            deterministic_ids=QDRANT_DETERMINISTIC_IDS,
            id_mode=QDRANT_ID_MODE,
        )
        _ = STORE.client.get_collections()  # ping
        LOG.info("Connecté à Qdrant.")
        VECTOR_STORE_ACTIVE = "QdrantStore"
    else:
        raise RuntimeError("Qdrant non configuré, fallback mémoire.")
except Exception as e:
    LOG.error(f"Qdrant indisponible (Connexion Qdrant impossible: {e}) — fallback en mémoire.")
    STORE = MemoryStore()
    VECTOR_STORE_ACTIVE = "MemoryStore"
    LOG.warning("Vector store: MEMORY (fallback). Les données sont volatiles (perdues au restart).")

# ======================================================================================
# Pydantic I/O
# ======================================================================================

class FileIn(BaseModel):
    path: Optional[str] = ""   # tolérancemajeure: accepte None
    text: Optional[str] = ""   # idem

class IndexRequest(BaseModel):
    project_id: str = Field(..., min_length=1)
    files: List[FileIn]
    chunk_size: int = 1200
    overlap: int = 200
    batch_size: int = 8
    store_text: bool = True

class QueryRequest(BaseModel):
    project_id: str
    query: str
    top_k: int = 6

class StatusBody(BaseModel):
    job_id: str

# ======================================================================================
# Jobs store (mémoire)
# ======================================================================================
JOBS: Dict[str, Dict[str, Any]] = {}  # {job_id: {"status": "...", "logs": [...], "created": ts}}

def _append_log(job_id: str, line: str):
    job = JOBS.get(job_id)
    if job:
        job["logs"].append(line)

def _set_status(job_id: str, status: str):
    job = JOBS.get(job_id)
    if job:
        job["status"] = status

def _auth(x_auth: Optional[str]):
    if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
        raise HTTPException(401, "Unauthorized")

# ======================================================================================
# Embeddings backends + retry/fallback
# ======================================================================================

def _retry_sleep(attempt: int) -> float:
    back = (RETRY_BASE_SEC ** attempt)
    jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
    return max(0.25, back * jitter)

def _normalize_rows(arr: np.ndarray) -> np.ndarray:
    arr = np.asarray(arr, dtype=np.float32)
    norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
    return (arr / norms).astype(np.float32)

def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
    if not DI_TOKEN:
        raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
    headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"}
    payload = {"model": DI_MODEL, "input": batch}
    r = requests.post(DI_URL, headers=headers, json=payload, timeout=DI_TIMEOUT)
    size = int(r.headers.get("Content-Length", "0") or 0)
    if r.status_code >= 400:
        LOG.error(f"DeepInfra error {r.status_code}: {r.text[:1000]}")
        r.raise_for_status()
    js = r.json()
    data = js.get("data")
    if not isinstance(data, list) or not data:
        raise RuntimeError(f"DeepInfra embeddings: réponse invalide {js}")
    embs = [d.get("embedding") for d in data]
    arr = np.asarray(embs, dtype=np.float32)
    if arr.ndim != 2:
        raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
    return _normalize_rows(arr), size

def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
    if not HF_TOKEN:
        raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
    headers = {
        "Authorization": f"Bearer {HF_TOKEN}",
        "Content-Type": "application/json",
    }
    if HF_WAIT:
        headers["X-Wait-For-Model"] = "true"
        headers["X-Use-Cache"] = "true"

    def _call(url: str, payload: Dict[str, Any], extra_headers: Optional[Dict[str, str]] = None):
        h = dict(headers)
        if extra_headers:
            h.update(extra_headers)
        r = requests.post(url, headers=h, json=payload, timeout=HF_TIMEOUT)
        return r

    payload = {"inputs": batch if len(batch) > 1 else batch[0]}
    r = _call(HF_URL_PIPE, payload)
    size = int(r.headers.get("Content-Length", "0") or 0)
    if r.status_code == 404:
        LOG.error("HF error 404: Not Found")
        LOG.warning(f"HF endpoint {HF_URL_PIPE} non dispo (404), fallback vers alternative ...")
    elif r.status_code >= 400:
        LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
        r.raise_for_status()
    else:
        data = r.json()
        arr = np.array(data, dtype=np.float32)
        if arr.ndim == 3:
            arr = arr.mean(axis=1)
        if arr.ndim == 1:
            arr = arr.reshape(1, -1)
        if arr.ndim != 2:
            raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
        return _normalize_rows(arr), size

    r2 = _call(HF_URL_MODL, payload)
    size2 = int(r2.headers.get("Content-Length", "0") or 0)
    if r2.status_code >= 400:
        LOG.error(f"HF error {r2.status_code}: {r2.text[:1000]}")
        if r2.status_code == 400 and "SentenceSimilarityPipeline" in (r2.text or ""):
            LOG.warning("HF MODELS a choisi Similarity -> retry avec ?task=feature-extraction + X-Task")
            r3 = _call(
                HF_URL_MODL + "?task=feature-extraction",
                payload,
                extra_headers={"X-Task": "feature-extraction"}
            )
            size3 = int(r3.headers.get("Content-Length", "0") or 0)
            if r3.status_code >= 400:
                LOG.error(f"HF error {r3.status_code}: {r3.text[:1000]}")
                r3.raise_for_status()
            data3 = r3.json()
            arr3 = np.array(data3, dtype=np.float32)
            if arr3.ndim == 3:
                arr3 = arr3.mean(axis=1)
            if arr3.ndim == 1:
                arr3 = arr3.reshape(1, -1)
            if arr3.ndim != 2:
                raise RuntimeError(f"HF: unexpected embeddings shape: {arr3.shape}")
            return _normalize_rows(arr3), size3
        else:
            r2.raise_for_status()
    data2 = r2.json()
    arr2 = np.array(data2, dtype=np.float32)
    if arr2.ndim == 3:
        arr2 = arr2.mean(axis=1)
    if arr2.ndim == 1:
        arr2 = arr2.reshape(1, -1)
    if arr2.ndim != 2:
        raise RuntimeError(f"HF: unexpected embeddings shape: {arr2.shape}")
    return _normalize_rows(arr2), size2

def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
    last_exc = None
    for attempt in range(RETRY_MAX):
        try:
            if job_id:
                _append_log(job_id, f"{label}: try {attempt+1}/{RETRY_MAX} (batch={len(batch)})")
            return func(batch)
        except requests.HTTPError as he:
            code = he.response.status_code if he.response is not None else "HTTP"
            retriable = code in (429, 500, 502, 503, 504)
            if not retriable:
                raise
            sleep_s = _retry_sleep(attempt)
            msg = f"{label}: HTTP {code}, retry in {sleep_s:.1f}s"
            LOG.warning(msg); _append_log(job_id, msg)
            time.sleep(sleep_s)
            last_exc = he
        except Exception as e:
            sleep_s = _retry_sleep(attempt)
            msg = f"{label}: error {type(e).__name__}: {e}, retry in {sleep_s:.1f}s"
            LOG.warning(msg); _append_log(job_id, msg)
            time.sleep(sleep_s)
            last_exc = e
    raise RuntimeError(f"{label}: retries exhausted: {last_exc}")

def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
    last_err = None
    for b in EMB_BACKEND_ORDER:
        if b == "deepinfra":
            try:
                return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
            except Exception as e:
                last_err = e; _append_log(job_id, f"DeepInfra failed: {e}."); LOG.error(f"DeepInfra failed: {e}")
        elif b == "hf":
            try:
                return _call_with_retries(_hf_post_embeddings_once, batch, "HF", job_id)
            except Exception as e:
                last_err = e; _append_log(job_id, f"HF failed: {e}."); LOG.error(f"HF failed: {e}")
                if "SentenceSimilarityPipeline" in str(e) and "deepinfra" not in EMB_BACKEND_ORDER:
                    _append_log(job_id, "Auto-fallback DeepInfra (HF => SentenceSimilarity).")
                    try:
                        return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
                    except Exception as e2:
                        last_err = e2; _append_log(job_id, f"DeepInfra failed after HF: {e2}."); LOG.error(f"DeepInfra failed after HF: {e2}")
        else:
            _append_log(job_id, f"Backend inconnu ignoré: {b}")
    raise RuntimeError(f"Tous les backends ont échoué: {last_err}")

# ======================================================================================
# Helpers chunking
# ======================================================================================

def _chunk_with_spans(text: str, size: int, overlap: int):
    n = len(text or "")
    if size <= 0:
        yield (0, n, text); return
    i = 0
    while i < n:
        j = min(n, i + size)
        yield (i, j, text[i:j])
        i = max(0, j - overlap)
        if i >= n:
            break

def _clean_chunk_text(text: str) -> str:
    """
    Nettoyage simple des fragments JSON / artefacts:
    - supprime un champ "indexed_at" tronqué à la fin,
    - supprime accolades/caractères isolés en début/fin,
    - compacte sauts de ligne multiples,
    - tente d'extraire des valeurs textuelles si le chunk ressemble fortement à du JSON.
    """
    if not text:
        return text
    t = (text or "").strip()

    # retirer un suffixe typique: , "indexed_at": "2025-..."}}
    t = re.sub(r',\s*"indexed_at"\s*:\s*"[^"]*"\s*}+\s*$', '', t, flags=re.IGNORECASE)

    # retirer d'autres clés timestamps communes à la fin si tronquées
    t = re.sub(r',\s*"(created_at|timestamp|time|date)"\s*:\s*"[^"]*"\s*}+\s*$', '', t, flags=re.IGNORECASE)

    # retirer accolades ou crochets seuls en début/fin
    t = re.sub(r'^[\s\]\}\,]+', '', t)
    t = re.sub(r'[\s\]\}\,]+$', '', t)

    # si le chunk ressemble majoritairement à du JSON (beaucoup de ":" ou "{"), essayer d'en extraire les valeurs textuelles
    if t.count(':') >= 3 and (t.count('{') + t.count('}')) >= 1:
        try:
            j = json.loads(t)
            if isinstance(j, dict):
                # concatène les valeurs textuelles pertinentes
                vals = []
                for v in j.values():
                    if isinstance(v, (str, int, float)):
                        vals.append(str(v))
                if vals:
                    t = " ".join(vals)
        except Exception:
            # ignore, on garde t tel quel
            pass

    # compacter sauts de ligne
    t = re.sub(r'\n{3,}', '\n\n', t)
    return t.strip()

# ======================================================================================
# Background task : indexation — VERSION CORRIGÉE (ajouts anti-dup & robustesse)
# ======================================================================================

def run_index_job(job_id: str, req: IndexRequest):
    try:
        _set_status(job_id, "running")
        _append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER} | store={VECTOR_STORE} (deterministic_ids={QDRANT_DETERMINISTIC_IDS}, mode={QDRANT_ID_MODE})")
        LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")

        # ensemble de hashes de chunks déjà vus dans ce job (dédup intra-job)
        seen_chunk_hashes = set()

        # --- DEBUG DIAGNOSTIC (INSÈRE ICI) ---
        try:
            N_SAMPLE = 6
            sample = req.files[:N_SAMPLE]
            seen_hashes = {}
            for fidx, fi in enumerate(sample, 1):
                p = (getattr(fi, "path", "") or "") or ""
                t = (getattr(fi, "text", "") or "") or ""
                h = hashlib.blake2b((t or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
                seen_hashes.setdefault(h, []).append(p)
                LOG.info(f"[{job_id}] recv file #{fidx}: path={p!r} len_text={len(t)} hash8={h} preview={repr(t[:120])}")
            if len(req.files) > N_SAMPLE:
                LOG.info(f"[{job_id}] ... and {len(req.files)-N_SAMPLE} more files")
            if len(seen_hashes) == 1 and len(req.files) > 1:
                _append_log(job_id, "⚠️ All received files appear IDENTICAL (same hash). Possible client-side bug.")
                LOG.warning("[%s] All files identical by hash8=%s", job_id, list(seen_hashes.keys())[0])
        except Exception as _e:
            LOG.exception("Debug sample failed: %s", _e)
        # --- end debug block ---

        col = f"proj_{req.project_id}"

        # Option: wipe avant index
        if WIPE_BEFORE_INDEX:
            try:
                STORE.wipe(col)
                _append_log(job_id, f"Wiped existing collection: {col}")
            except Exception as e:
                _append_log(job_id, f"Wipe failed (ignored): {e}")

        # --- WARMUP: calculer un embedding de test pour déterminer la dimension (dim) ---
        # On prend un chunk de départ (ou une string 'warmup' si pas de fichiers)
        if req.files:
            warm_text = next(_chunk_with_spans((req.files[0].text or "") , req.chunk_size, req.overlap))[2]
        else:
            warm_text = "warmup"
        try:
            embs, sz = _post_embeddings([warm_text], job_id=job_id)
            if embs is None or embs.ndim != 2:
                raise RuntimeError("Warmup embeddings invalid shape")
            dim = int(embs.shape[1])
            LOG.info(f"[{job_id}] warmup embeddings shape = {embs.shape} dtype={embs.dtype}")
            _append_log(job_id, f"warmup embeddings shape = {embs.shape} dim={dim}")
        except Exception as e:
            LOG.exception("[%s] Warmup embeddings failed: %s", job_id, e)
            _append_log(job_id, f"Warmup embeddings failed: {e}")
            _set_status(job_id, "error")
            return

        # If using QdrantStore: check existing collection vector size and warn if mismatch
        if isinstance(STORE, QdrantStore):
            try:
                # client.get_collection throws if not exists
                info = STORE.client.get_collection(collection_name=col)
                existing_size = None
                # depending on qdrant client version, structure might be different:
                if hasattr(info, "result") and isinstance(info.result, dict):
                    cfg = info.result.get("params") or {}
                    vectors = cfg.get("vectors") or {}
                    existing_size = int(vectors.get("size")) if vectors.get("size") else None
                elif isinstance(info, dict):
                    cfg = info.get("result", info)
                    vectors = cfg.get("params", {}).get("vectors", {})
                    existing_size = int(vectors.get("size")) if vectors else None

                if existing_size and existing_size != dim:
                    msg = (f"Qdrant collection {col} already exists with dim={existing_size} but embeddings dim={dim}. "
                           "This will likely cause vectors to be rejected. Consider wiping or recreating collection.")
                    LOG.error("[%s] %s", job_id, msg)
                    _append_log(job_id, msg)
                    # Optional: if WIPE_BEFORE_INDEX True, recreate:
                    if WIPE_BEFORE_INDEX:
                        try:
                            STORE.wipe(col)
                            STORE.ensure_collection(col, dim)
                            _append_log(job_id, f"Recreated collection {col} with dim={dim} (WIPE_BEFORE_INDEX).")
                        except Exception as e:
                            _append_log(job_id, f"Failed recreate collection: {e}")
            except Exception as e:
                # collection not present or unable to introspect -> ok, ensure_collection will create
                LOG.debug("[%s] Could not introspect collection: %s", job_id, e)

        STORE.ensure_collection(col, dim)
        _append_log(job_id, f"Collection ready: {col} (dim={dim})")

        total_chunks = 0
        buf_chunks: List[str] = []
        buf_metas: List[Dict[str, Any]] = []

        def _flush():
            nonlocal buf_chunks, buf_metas, total_chunks
            if not buf_chunks:
                return

            # ✅ DÉDUP INTRA-BATCH (même texte → même ID)
            if QDRANT_DETERMINISTIC_IDS:
                before = len(buf_metas)
                seen = set()
                dedup_chunks, dedup_metas = [], []
                for txt, meta in zip(buf_chunks, buf_metas):
                    pid = _stable_point_id_uuid(col, meta) if QDRANT_ID_MODE == "uuid" else uuid.UUID(_stable_point_id_uuid(col, meta)).int >> 64
                    if pid in seen:
                        continue
                    seen.add(pid)
                    dedup_chunks.append(txt); dedup_metas.append(meta)
                buf_chunks, buf_metas = dedup_chunks, dedup_metas
                skipped = before - len(buf_metas)
                if skipped > 0:
                    _append_log(job_id, f"Dedup intra-batch: skipped {skipped} duplicates")

            try:
                vecs, sz = _post_embeddings(buf_chunks, job_id=job_id)
            except Exception as e:
                # échec -> journaliser et faire échouer le job proprement (on ne vide pas le buffer pour debug mais on arrête)
                LOG.exception("[%s] Embeddings failed during flush: %s", job_id, e)
                _append_log(job_id, f"Embeddings failed during flush: {e}")
                _set_status(job_id, "error")
                raise

            added = STORE.upsert(col, vecs, buf_metas)
            total_chunks += added
            _append_log(job_id, f"+{added} chunks (total={total_chunks}) ~{(sz/1024.0):.1f}KiB")
            # vider buffers ONLY après succès
            buf_chunks, buf_metas = [], []

        # ✅ Filtre des fichiers pertinents
        TEXT_EXTS = {".py", ".md", ".txt", ".yaml", ".yml", ".json", ".sh", ".dockerfile", ".ini", ".cfg", ".toml", ".env"}
        IGNORE_PREFIXES = {".git", "__pycache__", ".vscode", ".idea", "node_modules", "build", "dist", "venv", ".env", ".log", ".tmp"}

        for fi, f in enumerate(req.files, 1):
            # defensive: path/text peuvent être None -> utiliser fallback
            path_raw = (getattr(f, "path", "") or "")  # peut être None
            path = (path_raw or "").strip()
            text_raw = (getattr(f, "text", "") or "")
            text = text_raw or ""

            if not path:
                # fallback path stable basé sur hash du texte (pour éviter collisions None)
                h8 = hashlib.blake2b((text or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
                path = f"__no_path__{h8}"

            if any(path.startswith(p) for p in IGNORE_PREFIXES):
                _append_log(job_id, f"📁 Ignored: {path} (dossier ignoré)")
                continue

            ext = os.path.splitext(path)[1].lower()
            if ext not in TEXT_EXTS:
                _append_log(job_id, f"📁 Ignored: {path} (extension non supportée: {ext})")
                continue

            if len((text or "").strip()) < 50:  # ✅ Ignorer les fichiers trop courts
                _append_log(job_id, f"📄 Ignored: {path} (texte trop court: {len((text or '').strip())} chars)")
                continue

            _append_log(job_id, f"📄 Processing: {path} ({len(text)} chars)")

            # --- traitement spécial JSON / NDJSON ---
            if ext in {".json"} or path.lower().endswith(".ndjson"):
                handled = False
                try:
                    parsed = json.loads(text)
                    # si c'est une liste -> indexer chaque entrée séparément
                    if isinstance(parsed, list):
                        for idx, obj in enumerate(parsed):
                            if isinstance(obj, dict):
                                s = " ".join(str(v) for v in obj.values() if isinstance(v, (str, int, float)))
                            else:
                                s = str(obj)
                            s = _clean_chunk_text(s)
                            if len(s) < 30:
                                continue
                            # dedup global intra-job
                            chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
                            if chash in seen_chunk_hashes:
                                continue
                            seen_chunk_hashes.add(chash)

                            meta = {"path": path, "chunk": idx, "start": 0, "end": len(s)}
                            if req.store_text:
                                meta["text"] = s
                            buf_chunks.append(s); buf_metas.append(meta)
                            if len(buf_chunks) >= req.batch_size:
                                _flush()
                        handled = True
                    elif isinstance(parsed, dict):
                        s = " ".join(str(v) for v in parsed.values() if isinstance(v, (str, int, float)))
                        s = _clean_chunk_text(s)
                        if len(s) >= 30:
                            chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
                            if chash not in seen_chunk_hashes:
                                seen_chunk_hashes.add(chash)
                                meta = {"path": path, "chunk": 0, "start": 0, "end": len(s)}
                                if req.store_text:
                                    meta["text"] = s
                                buf_chunks.append(s); buf_metas.append(meta)
                                if len(buf_chunks) >= req.batch_size:
                                    _flush()
                        handled = True
                except Exception:
                    # fallback NDJSON: une ligne == un JSON ou texte
                    try:
                        lines = [L for L in (text or "").splitlines() if L.strip()]
                        for li, line in enumerate(lines):
                            try:
                                obj = json.loads(line)
                                if isinstance(obj, dict):
                                    s = " ".join(str(v) for v in obj.values() if isinstance(v, (str, int, float)))
                                else:
                                    s = str(obj)
                                s = _clean_chunk_text(s)
                                if len(s) < 30:
                                    continue
                                chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
                                if chash in seen_chunk_hashes:
                                    continue
                                seen_chunk_hashes.add(chash)
                                meta = {"path": path, "chunk": li, "start": 0, "end": len(s)}
                                if req.store_text:
                                    meta["text"] = s
                                buf_chunks.append(s); buf_metas.append(meta)
                                if len(buf_chunks) >= req.batch_size:
                                    _flush()
                            except Exception:
                                # ligne non JSON -> indexer comme texte si longue
                                sl = (line or "").strip()
                                if len(sl) >= 30:
                                    sl = _clean_chunk_text(sl)
                                    chash = hashlib.blake2b(sl.encode("utf-8", "ignore"), digest_size=8).hexdigest()
                                    if chash in seen_chunk_hashes:
                                        continue
                                    seen_chunk_hashes.add(chash)
                                    meta = {"path": path, "chunk": li, "start": 0, "end": len(sl)}
                                    if req.store_text:
                                        meta["text"] = sl
                                    buf_chunks.append(sl); buf_metas.append(meta)
                                    if len(buf_chunks) >= req.batch_size:
                                        _flush()
                        handled = True
                    except Exception:
                        handled = False

                if handled:
                    _flush()
                    _append_log(job_id, f"File done: {path}")
                    continue  # passe au fichier suivant

            # --- traitement normal pour fichiers texte ---
            for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(text or "", req.chunk_size, req.overlap)):
                chunk_txt = (chunk_txt or "").strip()
                if len(chunk_txt) < 30:  # ✅ Ignorer les chunks trop courts
                    continue
                # nettoyage pour éviter artefacts JSON / timestamps
                chunk_txt = _clean_chunk_text(chunk_txt)
                if len(chunk_txt) < 30:
                    continue

                # dedup global intra-job (empêche répétitions)
                chash = hashlib.blake2b(chunk_txt.encode("utf-8", "ignore"), digest_size=8).hexdigest()
                if chash in seen_chunk_hashes:
                    continue
                seen_chunk_hashes.add(chash)

                buf_chunks.append(chunk_txt)
                meta = {
                    "path": path,
                    "chunk": ci,
                    "start": start,
                    "end": end,
                }
                if req.store_text:
                    meta["text"] = chunk_txt
                buf_metas.append(meta)

                if len(buf_chunks) >= req.batch_size:
                    _flush()

            # flush fin de fichier
            _flush()
            _append_log(job_id, f"File done: {path}")

        _append_log(job_id, f"Done. chunks={total_chunks}")
        _set_status(job_id, "done")
        LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")

    except Exception as e:
        LOG.exception("Index job failed")
        _append_log(job_id, f"ERROR: {e}")
        _set_status(job_id, "error")

# ======================================================================================
# API
# ======================================================================================

app = FastAPI()

@app.get("/")
def root():
    return {
        "ok": True,
        "service": "remote-indexer",
        "backends": EMB_BACKEND_ORDER,
        "hf_url_pipeline": HF_URL_PIPE if "hf" in EMB_BACKEND_ORDER else None,
        "hf_url_models": HF_URL_MODL if "hf" in EMB_BACKEND_ORDER else None,
        "di_url": DI_URL if "deepinfra" in EMB_BACKEND_ORDER else None,
        "di_model": DI_MODEL if "deepinfra" in EMB_BACKEND_ORDER else None,
        "vector_store": VECTOR_STORE,
        "vector_store_active": "QdrantStore" if isinstance(STORE, QdrantStore) else "MemoryStore",
        "qdrant_deterministic_ids": QDRANT_DETERMINISTIC_IDS,
        "qdrant_id_mode": QDRANT_ID_MODE,
        "wipe_before_index": WIPE_BEFORE_INDEX,
        "docs": "/health, /index, /status/{job_id} | /status?job_id= | POST /status, /query, /wipe",
    }

@app.get("/health")
def health():
    return {"ok": True, "store": "QdrantStore" if isinstance(STORE, QdrantStore) else "MemoryStore"}

def _check_backend_ready():
    if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
        raise HTTPException(400, "HF_API_TOKEN manquant côté serveur (backend=hf).")
    if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN and EMB_BACKEND_ORDER == ["deepinfra"]:
        raise HTTPException(400, "DEEPINFRA_API_KEY manquant côté serveur (backend=deepinfra).")

@app.post("/index")
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
    _auth(x_auth_token)
    _check_backend_ready()
    job_id = uuid.uuid4().hex[:12]
    JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
    LOG.info(f"Created job {job_id} for project {req.project_id}")
    _append_log(job_id, f"Job created: {job_id} project={req.project_id}")
    background_tasks.add_task(run_index_job, job_id, req)
    return {"job_id": job_id}

# --- 3 variantes pour /status ---
@app.get("/status/{job_id}")
def status_path(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
    _auth(x_auth_token)
    j = JOBS.get(job_id)
    if not j:
        # Response JSON plus explicite pour faciliter le debug côté client
        raise HTTPException(status_code=404, detail={"error": "job inconnu", "advice": "POST /index to create a new job"})
    return {"status": j["status"], "logs": j["logs"][-1500:]}

@app.get("/status")
def status_query(job_id: str = Query(...), x_auth_token: Optional[str] = Header(default=None)):
    return status_path(job_id, x_auth_token)

@app.post("/status")
def status_post(body: StatusBody, x_auth_token: Optional[str] = Header(default=None)):
    return status_path(body.job_id, x_auth_token)

@app.post("/query")
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
    _auth(x_auth_token)
    _check_backend_ready()
    vecs, _ = _post_embeddings([req.query])
    col = f"proj_{req.project_id}"
    try:
        results = STORE.search(col, vecs[0], int(req.top_k))
    except Exception as e:
        raise HTTPException(400, f"Search failed: {e}")
    out = []
    for pl in results:
        txt = pl.get("text")
        if txt and len(txt) > 800:
            txt = txt[:800] + "..."
        out.append({
            "path": pl.get("path"),
            "chunk": pl.get("chunk"),
            "start": pl.get("start"),
            "end": pl.get("end"),
            "text": txt,
            "score": float(pl.get("_score")) if pl.get("_score") is not None else None
        })
    return {"results": out}

@app.post("/wipe")
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
    _auth(x_auth_token)
    col = f"proj_{project_id}"
    try:
        STORE.wipe(col); return {"ok": True}
    except Exception as e:
        raise HTTPException(400, f"wipe failed: {e}")

# ======================================================================================
# Entrypoint
# ======================================================================================

if __name__ == "__main__":
    import uvicorn
    port = int(os.getenv("PORT", "7860"))
    LOG.info(f"===== Application Startup on PORT {port} =====")
    uvicorn.run(app, host="0.0.0.0", port=port)