Spaces:
Running
Running
File size: 42,281 Bytes
c724d0c 0132ade 7a8bf2f 0132ade 7a8bf2f 0132ade 7a8bf2f 0132ade e08033d 0132ade e08033d 0132ade e08033d 0132ade e08033d 0132ade 75159bc 0132ade 75159bc 0132ade 75159bc 0132ade c724d0c 0132ade c724d0c 0132ade 073e326 0132ade c724d0c 0132ade c724d0c 0132ade c724d0c 0132ade c724d0c 0132ade 7a8bf2f 13ebb90 0132ade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
# -*- coding: utf-8 -*-
from __future__ import annotations
import os
import time
import uuid
import random
import logging
import hashlib
import re
import json
from typing import List, Optional, Dict, Any, Tuple
import numpy as np
import requests
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException, Query
from pydantic import BaseModel, Field
# ======================================================================================
# Logging
# ======================================================================================
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
LOG = logging.getLogger("remote_indexer")
# ======================================================================================
# ENV (config)
# ======================================================================================
# Ordre des backends d'embeddings. Ex: "deepinfra,hf"
EMB_BACKEND_ORDER = [
s.strip().lower()
for s in os.getenv("EMB_BACKEND_ORDER", os.getenv("EMB_BACKEND", "deepinfra,hf")).split(",")
if s.strip()
]
# --- DeepInfra Embeddings (OpenAI-like) ---
DI_TOKEN = os.getenv("DEEPINFRA_API_KEY", "").strip()
DI_MODEL = os.getenv("DEEPINFRA_EMBED_MODEL", "BAAI/bge-m3").strip()
DI_URL = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/openai/embeddings").strip()
DI_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
# --- Hugging Face Inference API ---
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2").strip()
HF_URL_PIPE = os.getenv("HF_API_URL_PIPELINE", "").strip() or (
f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}"
)
HF_URL_MODL = os.getenv("HF_API_URL_MODELS", "").strip() or (
f"https://api-inference.huggingface.co/models/{HF_MODEL}"
)
HF_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
HF_WAIT = os.getenv("HF_WAIT_FOR_MODEL", "true").lower() in ("1", "true", "yes", "on")
# --- Retries / backoff ---
RETRY_MAX = int(os.getenv("EMB_RETRY_MAX", "6"))
RETRY_BASE_SEC = float(os.getenv("EMB_RETRY_BASE", "1.6"))
RETRY_JITTER = float(os.getenv("EMB_RETRY_JITTER", "0.35"))
# --- Vector store (Qdrant / Memory fallback) ---
VECTOR_STORE = os.getenv("VECTOR_STORE", "qdrant").strip().lower()
QDRANT_URL = os.getenv("QDRANT_URL", "").strip()
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
# IDs déterministes activés ?
QDRANT_DETERMINISTIC_IDS = os.getenv("QDRANT_DETERMINISTIC_IDS", "true").lower() in ("1","true","yes","on")
QDRANT_ID_MODE = os.getenv("QDRANT_ID_MODE", "uuid").strip().lower() # uuid|int
# Wipe automatique avant chaque /index (optionnel)
WIPE_BEFORE_INDEX = os.getenv("WIPE_BEFORE_INDEX", "false").lower() in ("1","true","yes","on")
# --- Auth d’API de ce service (simple header) ---
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()
LOG.info(f"Embeddings backend order = {EMB_BACKEND_ORDER}")
LOG.info(f"HF pipeline URL = {HF_URL_PIPE}")
LOG.info(f"HF models URL = {HF_URL_MODL}")
LOG.info(f"VECTOR_STORE = {VECTOR_STORE}")
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN:
LOG.warning("DEEPINFRA_API_KEY manquant — tentatives DeepInfra échoueront.")
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
LOG.warning("HF_API_TOKEN manquant — tentatives HF échoueront.")
# ======================================================================================
# Vector Stores (Memory + Qdrant)
# ======================================================================================
try:
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, PointStruct
except Exception:
QdrantClient = None
PointStruct = None
class BaseStore:
def ensure_collection(self, name: str, dim: int): ...
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int: ...
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]: ...
def wipe(self, name: str): ...
class MemoryStore(BaseStore):
"""Store en mémoire (volatile) — fallback/tests."""
def __init__(self):
self.db: Dict[str, Dict[str, Any]] = {} # name -> {"vecs":[np.ndarray], "payloads":[dict], "dim":int}
def ensure_collection(self, name: str, dim: int):
self.db.setdefault(name, {"vecs": [], "payloads": [], "dim": dim})
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int:
if name not in self.db:
raise RuntimeError(f"MemoryStore: collection {name} inconnue")
if len(vectors) != len(payloads):
raise ValueError("MemoryStore.upsert: tailles vectors/payloads incohérentes")
self.db[name]["vecs"].extend([np.asarray(v, dtype=np.float32) for v in vectors])
self.db[name]["payloads"].extend(payloads)
return len(vectors)
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
if name not in self.db or not self.db[name]["vecs"]:
return []
mat = np.vstack(self.db[name]["vecs"]).astype(np.float32) # [N, dim]
q = query_vec.reshape(1, -1).astype(np.float32)
sims = (mat @ q.T).ravel() # cosine (embeddings normalisés en amont)
top_idx = np.argsort(-sims)[:top_k]
out = []
for i in top_idx:
pl = dict(self.db[name]["payloads"][i]); pl["_score"] = float(sims[i])
out.append(pl)
return out
def wipe(self, name: str):
self.db.pop(name, None)
def _stable_point_id_uuid(collection: str, payload: Dict[str, Any]) -> str:
"""
UUID v5 déterministe: uuid5(NAMESPACE_URL, 'collection|path|chunk|start|end|BLAKE8(text)')
"""
path = str(payload.get("path", ""))
chunk = str(payload.get("chunk", ""))
start = str(payload.get("start", ""))
end = str(payload.get("end", ""))
text = payload.get("text", "")
# hash court du texte pour stabiliser l’empreinte sans tout concaténer
h = hashlib.blake2b((text or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
base = f"{collection}|{path}|{chunk}|{start}|{end}|{h}"
return str(uuid.uuid5(uuid.NAMESPACE_URL, base))
class QdrantStore(BaseStore):
"""Store Qdrant — IDs UUID déterministes (par défaut) ou entiers séquentiels."""
def __init__(self, url: str, api_key: Optional[str] = None,
deterministic_ids: bool = True, id_mode: str = "uuid"):
if QdrantClient is None or PointStruct is None:
raise RuntimeError("qdrant_client non disponible")
self.client = QdrantClient(url=url, api_key=api_key if api_key else None)
self._next_ids: Dict[str, int] = {}
self._deterministic = deterministic_ids
self._id_mode = id_mode if id_mode in ("uuid", "int") else "uuid"
def _init_next_id(self, name: str):
try:
cnt = self.client.count(collection_name=name, exact=True).count
except Exception:
cnt = 0
self._next_ids[name] = int(cnt)
def ensure_collection(self, name: str, dim: int):
try:
self.client.get_collection(name)
except Exception:
self.client.create_collection(
collection_name=name,
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
)
if name not in self._next_ids:
self._init_next_id(name)
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int:
if vectors is None or len(vectors) == 0:
return 0
if len(vectors) != len(payloads):
raise ValueError("QdrantStore.upsert: tailles vectors/payloads incohérentes")
points: List[PointStruct] = []
added = 0
if self._deterministic and self._id_mode == "uuid":
# UUID déterministes => Qdrant Cloud OK, remplace si existe
seen = set()
for v, pl in zip(vectors, payloads):
pid = _stable_point_id_uuid(name, pl)
if pid in seen:
continue # dédup intra-batch
seen.add(pid)
points.append(PointStruct(id=pid,
vector=np.asarray(v, dtype=np.float32).tolist(),
payload=pl))
if points:
self.client.upsert(collection_name=name, points=points)
added = len(points)
elif self._deterministic and self._id_mode == "int":
# int déterministes (peu utile si on veut remplacer)
seen = set()
for v, pl in zip(vectors, payloads):
pid_str = _stable_point_id_uuid(name, pl)
pid_int = uuid.UUID(pid_str).int >> 64
if pid_int in seen:
continue
seen.add(pid_int)
points.append(PointStruct(id=int(pid_int),
vector=np.asarray(v, dtype=np.float32).tolist(),
payload=pl))
if points:
self.client.upsert(collection_name=name, points=points)
added = len(points)
else:
# IDs séquentiels -> append-only
if name not in self._next_ids:
self._init_next_id(name)
start = self._next_ids[name]
for i, (v, pl) in enumerate(zip(vectors, payloads)):
points.append(PointStruct(id=start + i,
vector=np.asarray(v, dtype=np.float32).tolist(),
payload=pl))
if points:
self.client.upsert(collection_name=name, points=points)
added = len(points)
self._next_ids[name] += added
LOG.debug(f"QdrantStore.upsert: +{added} points (deterministic={self._deterministic}, mode={self._id_mode})")
return added
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
qv = query_vec[0].astype(np.float32).tolist() if query_vec.ndim == 2 else query_vec.astype(np.float32).tolist()
res = self.client.search(collection_name=name, query_vector=qv, limit=int(top_k))
out = []
for p in res:
pl = p.payload or {}
try:
pl["_score"] = float(p.score)
except Exception:
pl["_score"] = None
out.append(pl)
return out
def wipe(self, name: str):
try:
self.client.delete_collection(name)
except Exception:
pass
self._next_ids.pop(name, None)
# Initialisation du store actif
try:
if VECTOR_STORE == "qdrant" and QDRANT_URL:
STORE: BaseStore = QdrantStore(
QDRANT_URL,
api_key=QDRANT_API if QDRANT_API else None,
deterministic_ids=QDRANT_DETERMINISTIC_IDS,
id_mode=QDRANT_ID_MODE,
)
_ = STORE.client.get_collections() # ping
LOG.info("Connecté à Qdrant.")
VECTOR_STORE_ACTIVE = "QdrantStore"
else:
raise RuntimeError("Qdrant non configuré, fallback mémoire.")
except Exception as e:
LOG.error(f"Qdrant indisponible (Connexion Qdrant impossible: {e}) — fallback en mémoire.")
STORE = MemoryStore()
VECTOR_STORE_ACTIVE = "MemoryStore"
LOG.warning("Vector store: MEMORY (fallback). Les données sont volatiles (perdues au restart).")
# ======================================================================================
# Pydantic I/O
# ======================================================================================
class FileIn(BaseModel):
path: Optional[str] = "" # tolérancemajeure: accepte None
text: Optional[str] = "" # idem
class IndexRequest(BaseModel):
project_id: str = Field(..., min_length=1)
files: List[FileIn]
chunk_size: int = 1200
overlap: int = 200
batch_size: int = 8
store_text: bool = True
class QueryRequest(BaseModel):
project_id: str
query: str
top_k: int = 6
class StatusBody(BaseModel):
job_id: str
# ======================================================================================
# Jobs store (mémoire)
# ======================================================================================
JOBS: Dict[str, Dict[str, Any]] = {} # {job_id: {"status": "...", "logs": [...], "created": ts}}
def _append_log(job_id: str, line: str):
job = JOBS.get(job_id)
if job:
job["logs"].append(line)
def _set_status(job_id: str, status: str):
job = JOBS.get(job_id)
if job:
job["status"] = status
def _auth(x_auth: Optional[str]):
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
# ======================================================================================
# Embeddings backends + retry/fallback
# ======================================================================================
def _retry_sleep(attempt: int) -> float:
back = (RETRY_BASE_SEC ** attempt)
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
return max(0.25, back * jitter)
def _normalize_rows(arr: np.ndarray) -> np.ndarray:
arr = np.asarray(arr, dtype=np.float32)
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
return (arr / norms).astype(np.float32)
def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
if not DI_TOKEN:
raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"}
payload = {"model": DI_MODEL, "input": batch}
r = requests.post(DI_URL, headers=headers, json=payload, timeout=DI_TIMEOUT)
size = int(r.headers.get("Content-Length", "0") or 0)
if r.status_code >= 400:
LOG.error(f"DeepInfra error {r.status_code}: {r.text[:1000]}")
r.raise_for_status()
js = r.json()
data = js.get("data")
if not isinstance(data, list) or not data:
raise RuntimeError(f"DeepInfra embeddings: réponse invalide {js}")
embs = [d.get("embedding") for d in data]
arr = np.asarray(embs, dtype=np.float32)
if arr.ndim != 2:
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
return _normalize_rows(arr), size
def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
if not HF_TOKEN:
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
headers = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
}
if HF_WAIT:
headers["X-Wait-For-Model"] = "true"
headers["X-Use-Cache"] = "true"
def _call(url: str, payload: Dict[str, Any], extra_headers: Optional[Dict[str, str]] = None):
h = dict(headers)
if extra_headers:
h.update(extra_headers)
r = requests.post(url, headers=h, json=payload, timeout=HF_TIMEOUT)
return r
payload = {"inputs": batch if len(batch) > 1 else batch[0]}
r = _call(HF_URL_PIPE, payload)
size = int(r.headers.get("Content-Length", "0") or 0)
if r.status_code == 404:
LOG.error("HF error 404: Not Found")
LOG.warning(f"HF endpoint {HF_URL_PIPE} non dispo (404), fallback vers alternative ...")
elif r.status_code >= 400:
LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
r.raise_for_status()
else:
data = r.json()
arr = np.array(data, dtype=np.float32)
if arr.ndim == 3:
arr = arr.mean(axis=1)
if arr.ndim == 1:
arr = arr.reshape(1, -1)
if arr.ndim != 2:
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
return _normalize_rows(arr), size
r2 = _call(HF_URL_MODL, payload)
size2 = int(r2.headers.get("Content-Length", "0") or 0)
if r2.status_code >= 400:
LOG.error(f"HF error {r2.status_code}: {r2.text[:1000]}")
if r2.status_code == 400 and "SentenceSimilarityPipeline" in (r2.text or ""):
LOG.warning("HF MODELS a choisi Similarity -> retry avec ?task=feature-extraction + X-Task")
r3 = _call(
HF_URL_MODL + "?task=feature-extraction",
payload,
extra_headers={"X-Task": "feature-extraction"}
)
size3 = int(r3.headers.get("Content-Length", "0") or 0)
if r3.status_code >= 400:
LOG.error(f"HF error {r3.status_code}: {r3.text[:1000]}")
r3.raise_for_status()
data3 = r3.json()
arr3 = np.array(data3, dtype=np.float32)
if arr3.ndim == 3:
arr3 = arr3.mean(axis=1)
if arr3.ndim == 1:
arr3 = arr3.reshape(1, -1)
if arr3.ndim != 2:
raise RuntimeError(f"HF: unexpected embeddings shape: {arr3.shape}")
return _normalize_rows(arr3), size3
else:
r2.raise_for_status()
data2 = r2.json()
arr2 = np.array(data2, dtype=np.float32)
if arr2.ndim == 3:
arr2 = arr2.mean(axis=1)
if arr2.ndim == 1:
arr2 = arr2.reshape(1, -1)
if arr2.ndim != 2:
raise RuntimeError(f"HF: unexpected embeddings shape: {arr2.shape}")
return _normalize_rows(arr2), size2
def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
last_exc = None
for attempt in range(RETRY_MAX):
try:
if job_id:
_append_log(job_id, f"{label}: try {attempt+1}/{RETRY_MAX} (batch={len(batch)})")
return func(batch)
except requests.HTTPError as he:
code = he.response.status_code if he.response is not None else "HTTP"
retriable = code in (429, 500, 502, 503, 504)
if not retriable:
raise
sleep_s = _retry_sleep(attempt)
msg = f"{label}: HTTP {code}, retry in {sleep_s:.1f}s"
LOG.warning(msg); _append_log(job_id, msg)
time.sleep(sleep_s)
last_exc = he
except Exception as e:
sleep_s = _retry_sleep(attempt)
msg = f"{label}: error {type(e).__name__}: {e}, retry in {sleep_s:.1f}s"
LOG.warning(msg); _append_log(job_id, msg)
time.sleep(sleep_s)
last_exc = e
raise RuntimeError(f"{label}: retries exhausted: {last_exc}")
def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
last_err = None
for b in EMB_BACKEND_ORDER:
if b == "deepinfra":
try:
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
except Exception as e:
last_err = e; _append_log(job_id, f"DeepInfra failed: {e}."); LOG.error(f"DeepInfra failed: {e}")
elif b == "hf":
try:
return _call_with_retries(_hf_post_embeddings_once, batch, "HF", job_id)
except Exception as e:
last_err = e; _append_log(job_id, f"HF failed: {e}."); LOG.error(f"HF failed: {e}")
if "SentenceSimilarityPipeline" in str(e) and "deepinfra" not in EMB_BACKEND_ORDER:
_append_log(job_id, "Auto-fallback DeepInfra (HF => SentenceSimilarity).")
try:
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
except Exception as e2:
last_err = e2; _append_log(job_id, f"DeepInfra failed after HF: {e2}."); LOG.error(f"DeepInfra failed after HF: {e2}")
else:
_append_log(job_id, f"Backend inconnu ignoré: {b}")
raise RuntimeError(f"Tous les backends ont échoué: {last_err}")
# ======================================================================================
# Helpers chunking
# ======================================================================================
def _chunk_with_spans(text: str, size: int, overlap: int):
n = len(text or "")
if size <= 0:
yield (0, n, text); return
i = 0
while i < n:
j = min(n, i + size)
yield (i, j, text[i:j])
i = max(0, j - overlap)
if i >= n:
break
def _clean_chunk_text(text: str) -> str:
"""
Nettoyage simple des fragments JSON / artefacts:
- supprime un champ "indexed_at" tronqué à la fin,
- supprime accolades/caractères isolés en début/fin,
- compacte sauts de ligne multiples,
- tente d'extraire des valeurs textuelles si le chunk ressemble fortement à du JSON.
"""
if not text:
return text
t = (text or "").strip()
# retirer un suffixe typique: , "indexed_at": "2025-..."}}
t = re.sub(r',\s*"indexed_at"\s*:\s*"[^"]*"\s*}+\s*$', '', t, flags=re.IGNORECASE)
# retirer d'autres clés timestamps communes à la fin si tronquées
t = re.sub(r',\s*"(created_at|timestamp|time|date)"\s*:\s*"[^"]*"\s*}+\s*$', '', t, flags=re.IGNORECASE)
# retirer accolades ou crochets seuls en début/fin
t = re.sub(r'^[\s\]\}\,]+', '', t)
t = re.sub(r'[\s\]\}\,]+$', '', t)
# si le chunk ressemble majoritairement à du JSON (beaucoup de ":" ou "{"), essayer d'en extraire les valeurs textuelles
if t.count(':') >= 3 and (t.count('{') + t.count('}')) >= 1:
try:
j = json.loads(t)
if isinstance(j, dict):
# concatène les valeurs textuelles pertinentes
vals = []
for v in j.values():
if isinstance(v, (str, int, float)):
vals.append(str(v))
if vals:
t = " ".join(vals)
except Exception:
# ignore, on garde t tel quel
pass
# compacter sauts de ligne
t = re.sub(r'\n{3,}', '\n\n', t)
return t.strip()
# ======================================================================================
# Background task : indexation — VERSION CORRIGÉE (ajouts anti-dup & robustesse)
# ======================================================================================
def run_index_job(job_id: str, req: IndexRequest):
try:
_set_status(job_id, "running")
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER} | store={VECTOR_STORE} (deterministic_ids={QDRANT_DETERMINISTIC_IDS}, mode={QDRANT_ID_MODE})")
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
# ensemble de hashes de chunks déjà vus dans ce job (dédup intra-job)
seen_chunk_hashes = set()
# --- DEBUG DIAGNOSTIC (INSÈRE ICI) ---
try:
N_SAMPLE = 6
sample = req.files[:N_SAMPLE]
seen_hashes = {}
for fidx, fi in enumerate(sample, 1):
p = (getattr(fi, "path", "") or "") or ""
t = (getattr(fi, "text", "") or "") or ""
h = hashlib.blake2b((t or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
seen_hashes.setdefault(h, []).append(p)
LOG.info(f"[{job_id}] recv file #{fidx}: path={p!r} len_text={len(t)} hash8={h} preview={repr(t[:120])}")
if len(req.files) > N_SAMPLE:
LOG.info(f"[{job_id}] ... and {len(req.files)-N_SAMPLE} more files")
if len(seen_hashes) == 1 and len(req.files) > 1:
_append_log(job_id, "⚠️ All received files appear IDENTICAL (same hash). Possible client-side bug.")
LOG.warning("[%s] All files identical by hash8=%s", job_id, list(seen_hashes.keys())[0])
except Exception as _e:
LOG.exception("Debug sample failed: %s", _e)
# --- end debug block ---
col = f"proj_{req.project_id}"
# Option: wipe avant index
if WIPE_BEFORE_INDEX:
try:
STORE.wipe(col)
_append_log(job_id, f"Wiped existing collection: {col}")
except Exception as e:
_append_log(job_id, f"Wipe failed (ignored): {e}")
# --- WARMUP: calculer un embedding de test pour déterminer la dimension (dim) ---
# On prend un chunk de départ (ou une string 'warmup' si pas de fichiers)
if req.files:
warm_text = next(_chunk_with_spans((req.files[0].text or "") , req.chunk_size, req.overlap))[2]
else:
warm_text = "warmup"
try:
embs, sz = _post_embeddings([warm_text], job_id=job_id)
if embs is None or embs.ndim != 2:
raise RuntimeError("Warmup embeddings invalid shape")
dim = int(embs.shape[1])
LOG.info(f"[{job_id}] warmup embeddings shape = {embs.shape} dtype={embs.dtype}")
_append_log(job_id, f"warmup embeddings shape = {embs.shape} dim={dim}")
except Exception as e:
LOG.exception("[%s] Warmup embeddings failed: %s", job_id, e)
_append_log(job_id, f"Warmup embeddings failed: {e}")
_set_status(job_id, "error")
return
# If using QdrantStore: check existing collection vector size and warn if mismatch
if isinstance(STORE, QdrantStore):
try:
# client.get_collection throws if not exists
info = STORE.client.get_collection(collection_name=col)
existing_size = None
# depending on qdrant client version, structure might be different:
if hasattr(info, "result") and isinstance(info.result, dict):
cfg = info.result.get("params") or {}
vectors = cfg.get("vectors") or {}
existing_size = int(vectors.get("size")) if vectors.get("size") else None
elif isinstance(info, dict):
cfg = info.get("result", info)
vectors = cfg.get("params", {}).get("vectors", {})
existing_size = int(vectors.get("size")) if vectors else None
if existing_size and existing_size != dim:
msg = (f"Qdrant collection {col} already exists with dim={existing_size} but embeddings dim={dim}. "
"This will likely cause vectors to be rejected. Consider wiping or recreating collection.")
LOG.error("[%s] %s", job_id, msg)
_append_log(job_id, msg)
# Optional: if WIPE_BEFORE_INDEX True, recreate:
if WIPE_BEFORE_INDEX:
try:
STORE.wipe(col)
STORE.ensure_collection(col, dim)
_append_log(job_id, f"Recreated collection {col} with dim={dim} (WIPE_BEFORE_INDEX).")
except Exception as e:
_append_log(job_id, f"Failed recreate collection: {e}")
except Exception as e:
# collection not present or unable to introspect -> ok, ensure_collection will create
LOG.debug("[%s] Could not introspect collection: %s", job_id, e)
STORE.ensure_collection(col, dim)
_append_log(job_id, f"Collection ready: {col} (dim={dim})")
total_chunks = 0
buf_chunks: List[str] = []
buf_metas: List[Dict[str, Any]] = []
def _flush():
nonlocal buf_chunks, buf_metas, total_chunks
if not buf_chunks:
return
# ✅ DÉDUP INTRA-BATCH (même texte → même ID)
if QDRANT_DETERMINISTIC_IDS:
before = len(buf_metas)
seen = set()
dedup_chunks, dedup_metas = [], []
for txt, meta in zip(buf_chunks, buf_metas):
pid = _stable_point_id_uuid(col, meta) if QDRANT_ID_MODE == "uuid" else uuid.UUID(_stable_point_id_uuid(col, meta)).int >> 64
if pid in seen:
continue
seen.add(pid)
dedup_chunks.append(txt); dedup_metas.append(meta)
buf_chunks, buf_metas = dedup_chunks, dedup_metas
skipped = before - len(buf_metas)
if skipped > 0:
_append_log(job_id, f"Dedup intra-batch: skipped {skipped} duplicates")
try:
vecs, sz = _post_embeddings(buf_chunks, job_id=job_id)
except Exception as e:
# échec -> journaliser et faire échouer le job proprement (on ne vide pas le buffer pour debug mais on arrête)
LOG.exception("[%s] Embeddings failed during flush: %s", job_id, e)
_append_log(job_id, f"Embeddings failed during flush: {e}")
_set_status(job_id, "error")
raise
added = STORE.upsert(col, vecs, buf_metas)
total_chunks += added
_append_log(job_id, f"+{added} chunks (total={total_chunks}) ~{(sz/1024.0):.1f}KiB")
# vider buffers ONLY après succès
buf_chunks, buf_metas = [], []
# ✅ Filtre des fichiers pertinents
TEXT_EXTS = {".py", ".md", ".txt", ".yaml", ".yml", ".json", ".sh", ".dockerfile", ".ini", ".cfg", ".toml", ".env"}
IGNORE_PREFIXES = {".git", "__pycache__", ".vscode", ".idea", "node_modules", "build", "dist", "venv", ".env", ".log", ".tmp"}
for fi, f in enumerate(req.files, 1):
# defensive: path/text peuvent être None -> utiliser fallback
path_raw = (getattr(f, "path", "") or "") # peut être None
path = (path_raw or "").strip()
text_raw = (getattr(f, "text", "") or "")
text = text_raw or ""
if not path:
# fallback path stable basé sur hash du texte (pour éviter collisions None)
h8 = hashlib.blake2b((text or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
path = f"__no_path__{h8}"
if any(path.startswith(p) for p in IGNORE_PREFIXES):
_append_log(job_id, f"📁 Ignored: {path} (dossier ignoré)")
continue
ext = os.path.splitext(path)[1].lower()
if ext not in TEXT_EXTS:
_append_log(job_id, f"📁 Ignored: {path} (extension non supportée: {ext})")
continue
if len((text or "").strip()) < 50: # ✅ Ignorer les fichiers trop courts
_append_log(job_id, f"📄 Ignored: {path} (texte trop court: {len((text or '').strip())} chars)")
continue
_append_log(job_id, f"📄 Processing: {path} ({len(text)} chars)")
# --- traitement spécial JSON / NDJSON ---
if ext in {".json"} or path.lower().endswith(".ndjson"):
handled = False
try:
parsed = json.loads(text)
# si c'est une liste -> indexer chaque entrée séparément
if isinstance(parsed, list):
for idx, obj in enumerate(parsed):
if isinstance(obj, dict):
s = " ".join(str(v) for v in obj.values() if isinstance(v, (str, int, float)))
else:
s = str(obj)
s = _clean_chunk_text(s)
if len(s) < 30:
continue
# dedup global intra-job
chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
if chash in seen_chunk_hashes:
continue
seen_chunk_hashes.add(chash)
meta = {"path": path, "chunk": idx, "start": 0, "end": len(s)}
if req.store_text:
meta["text"] = s
buf_chunks.append(s); buf_metas.append(meta)
if len(buf_chunks) >= req.batch_size:
_flush()
handled = True
elif isinstance(parsed, dict):
s = " ".join(str(v) for v in parsed.values() if isinstance(v, (str, int, float)))
s = _clean_chunk_text(s)
if len(s) >= 30:
chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
if chash not in seen_chunk_hashes:
seen_chunk_hashes.add(chash)
meta = {"path": path, "chunk": 0, "start": 0, "end": len(s)}
if req.store_text:
meta["text"] = s
buf_chunks.append(s); buf_metas.append(meta)
if len(buf_chunks) >= req.batch_size:
_flush()
handled = True
except Exception:
# fallback NDJSON: une ligne == un JSON ou texte
try:
lines = [L for L in (text or "").splitlines() if L.strip()]
for li, line in enumerate(lines):
try:
obj = json.loads(line)
if isinstance(obj, dict):
s = " ".join(str(v) for v in obj.values() if isinstance(v, (str, int, float)))
else:
s = str(obj)
s = _clean_chunk_text(s)
if len(s) < 30:
continue
chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
if chash in seen_chunk_hashes:
continue
seen_chunk_hashes.add(chash)
meta = {"path": path, "chunk": li, "start": 0, "end": len(s)}
if req.store_text:
meta["text"] = s
buf_chunks.append(s); buf_metas.append(meta)
if len(buf_chunks) >= req.batch_size:
_flush()
except Exception:
# ligne non JSON -> indexer comme texte si longue
sl = (line or "").strip()
if len(sl) >= 30:
sl = _clean_chunk_text(sl)
chash = hashlib.blake2b(sl.encode("utf-8", "ignore"), digest_size=8).hexdigest()
if chash in seen_chunk_hashes:
continue
seen_chunk_hashes.add(chash)
meta = {"path": path, "chunk": li, "start": 0, "end": len(sl)}
if req.store_text:
meta["text"] = sl
buf_chunks.append(sl); buf_metas.append(meta)
if len(buf_chunks) >= req.batch_size:
_flush()
handled = True
except Exception:
handled = False
if handled:
_flush()
_append_log(job_id, f"File done: {path}")
continue # passe au fichier suivant
# --- traitement normal pour fichiers texte ---
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(text or "", req.chunk_size, req.overlap)):
chunk_txt = (chunk_txt or "").strip()
if len(chunk_txt) < 30: # ✅ Ignorer les chunks trop courts
continue
# nettoyage pour éviter artefacts JSON / timestamps
chunk_txt = _clean_chunk_text(chunk_txt)
if len(chunk_txt) < 30:
continue
# dedup global intra-job (empêche répétitions)
chash = hashlib.blake2b(chunk_txt.encode("utf-8", "ignore"), digest_size=8).hexdigest()
if chash in seen_chunk_hashes:
continue
seen_chunk_hashes.add(chash)
buf_chunks.append(chunk_txt)
meta = {
"path": path,
"chunk": ci,
"start": start,
"end": end,
}
if req.store_text:
meta["text"] = chunk_txt
buf_metas.append(meta)
if len(buf_chunks) >= req.batch_size:
_flush()
# flush fin de fichier
_flush()
_append_log(job_id, f"File done: {path}")
_append_log(job_id, f"Done. chunks={total_chunks}")
_set_status(job_id, "done")
LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
except Exception as e:
LOG.exception("Index job failed")
_append_log(job_id, f"ERROR: {e}")
_set_status(job_id, "error")
# ======================================================================================
# API
# ======================================================================================
app = FastAPI()
@app.get("/")
def root():
return {
"ok": True,
"service": "remote-indexer",
"backends": EMB_BACKEND_ORDER,
"hf_url_pipeline": HF_URL_PIPE if "hf" in EMB_BACKEND_ORDER else None,
"hf_url_models": HF_URL_MODL if "hf" in EMB_BACKEND_ORDER else None,
"di_url": DI_URL if "deepinfra" in EMB_BACKEND_ORDER else None,
"di_model": DI_MODEL if "deepinfra" in EMB_BACKEND_ORDER else None,
"vector_store": VECTOR_STORE,
"vector_store_active": "QdrantStore" if isinstance(STORE, QdrantStore) else "MemoryStore",
"qdrant_deterministic_ids": QDRANT_DETERMINISTIC_IDS,
"qdrant_id_mode": QDRANT_ID_MODE,
"wipe_before_index": WIPE_BEFORE_INDEX,
"docs": "/health, /index, /status/{job_id} | /status?job_id= | POST /status, /query, /wipe",
}
@app.get("/health")
def health():
return {"ok": True, "store": "QdrantStore" if isinstance(STORE, QdrantStore) else "MemoryStore"}
def _check_backend_ready():
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
raise HTTPException(400, "HF_API_TOKEN manquant côté serveur (backend=hf).")
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN and EMB_BACKEND_ORDER == ["deepinfra"]:
raise HTTPException(400, "DEEPINFRA_API_KEY manquant côté serveur (backend=deepinfra).")
@app.post("/index")
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
_check_backend_ready()
job_id = uuid.uuid4().hex[:12]
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
LOG.info(f"Created job {job_id} for project {req.project_id}")
_append_log(job_id, f"Job created: {job_id} project={req.project_id}")
background_tasks.add_task(run_index_job, job_id, req)
return {"job_id": job_id}
# --- 3 variantes pour /status ---
@app.get("/status/{job_id}")
def status_path(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
j = JOBS.get(job_id)
if not j:
# Response JSON plus explicite pour faciliter le debug côté client
raise HTTPException(status_code=404, detail={"error": "job inconnu", "advice": "POST /index to create a new job"})
return {"status": j["status"], "logs": j["logs"][-1500:]}
@app.get("/status")
def status_query(job_id: str = Query(...), x_auth_token: Optional[str] = Header(default=None)):
return status_path(job_id, x_auth_token)
@app.post("/status")
def status_post(body: StatusBody, x_auth_token: Optional[str] = Header(default=None)):
return status_path(body.job_id, x_auth_token)
@app.post("/query")
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
_check_backend_ready()
vecs, _ = _post_embeddings([req.query])
col = f"proj_{req.project_id}"
try:
results = STORE.search(col, vecs[0], int(req.top_k))
except Exception as e:
raise HTTPException(400, f"Search failed: {e}")
out = []
for pl in results:
txt = pl.get("text")
if txt and len(txt) > 800:
txt = txt[:800] + "..."
out.append({
"path": pl.get("path"),
"chunk": pl.get("chunk"),
"start": pl.get("start"),
"end": pl.get("end"),
"text": txt,
"score": float(pl.get("_score")) if pl.get("_score") is not None else None
})
return {"results": out}
@app.post("/wipe")
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
_auth(x_auth_token)
col = f"proj_{project_id}"
try:
STORE.wipe(col); return {"ok": True}
except Exception as e:
raise HTTPException(400, f"wipe failed: {e}")
# ======================================================================================
# Entrypoint
# ======================================================================================
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", "7860"))
LOG.info(f"===== Application Startup on PORT {port} =====")
uvicorn.run(app, host="0.0.0.0", port=port) |