Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,263 +1,937 @@
|
|
| 1 |
-
# main.py
|
| 2 |
# -*- coding: utf-8 -*-
|
| 3 |
from __future__ import annotations
|
|
|
|
| 4 |
import os
|
| 5 |
-
import sys
|
| 6 |
import time
|
|
|
|
|
|
|
| 7 |
import logging
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from
|
| 16 |
-
from
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
try:
|
| 30 |
-
from
|
|
|
|
| 31 |
except Exception:
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
try:
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
else:
|
| 59 |
-
|
| 60 |
-
except Exception:
|
| 61 |
-
LOG.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
|
| 69 |
-
def
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
def
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
try:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
continue
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
try:
|
| 110 |
-
|
| 111 |
-
return gr.update(choices=files, value=[])
|
| 112 |
except Exception as e:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
try:
|
| 128 |
-
|
| 129 |
-
# si l'utilisateur a choisi des fichiers explicitement, utiliser ceux-ci
|
| 130 |
-
if use_selected and selected_files:
|
| 131 |
-
files_to_send = selected_files
|
| 132 |
-
else:
|
| 133 |
-
# si get_files_to_index est dispo, l'utiliser (logique de hash/diff)
|
| 134 |
-
if get_files_to_index:
|
| 135 |
-
files_to_send = get_files_to_index(repo_dir)
|
| 136 |
-
else:
|
| 137 |
-
files_to_send = _get_repo_text_files(ws_name)
|
| 138 |
-
|
| 139 |
-
# Préparer payload minimal : path + text (read files)
|
| 140 |
-
payload_files = []
|
| 141 |
-
for rel in files_to_send:
|
| 142 |
-
full = os.path.join(repo_dir, rel)
|
| 143 |
-
try:
|
| 144 |
-
with open(full, "r", encoding="utf-8", errors="ignore") as f:
|
| 145 |
-
text = f.read()
|
| 146 |
-
if text and rel:
|
| 147 |
-
payload_files.append({"path": rel, "text": text})
|
| 148 |
-
except Exception as e:
|
| 149 |
-
LOG.debug("skip file %s : %s", full, e)
|
| 150 |
-
|
| 151 |
-
if not payload_files:
|
| 152 |
-
return "❌ Aucun fichier texte valide à indexer."
|
| 153 |
-
|
| 154 |
-
LOG.info("Lancement index distant: %d fichiers -> %s", len(payload_files), base_url or os.getenv("REMOTE_INDEX_URL"))
|
| 155 |
-
# start_remote_index est importé depuis app.remote_index_client
|
| 156 |
-
job_id = start_remote_index(
|
| 157 |
-
project_id=ws_name,
|
| 158 |
-
files=payload_files,
|
| 159 |
-
chunk_size=chunk_size,
|
| 160 |
-
overlap=overlap,
|
| 161 |
-
batch_size=batch_size,
|
| 162 |
-
store_text=bool(store_text),
|
| 163 |
-
timeout=600.0,
|
| 164 |
-
extra_headers={"X-Remote-Url": base_url} if base_url else None,
|
| 165 |
-
)
|
| 166 |
-
return f"✅ Index lancé (job_id={job_id})"
|
| 167 |
except Exception as e:
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
#
|
| 172 |
-
|
| 173 |
-
demo = gr.Blocks(title="appli_v1", css=None)
|
| 174 |
-
|
| 175 |
-
with demo:
|
| 176 |
-
with gr.Row():
|
| 177 |
-
gr.Markdown("## appli_v1 — interface")
|
| 178 |
-
with gr.Tabs():
|
| 179 |
-
# --- Onglet Indexation ---
|
| 180 |
-
with gr.Tab("📊 Index"):
|
| 181 |
-
gr.Markdown("### 🚀 Indexation intelligente des fichiers textuels")
|
| 182 |
-
gr.Markdown(
|
| 183 |
-
"Indexe automatiquement **uniquement les fichiers modifiés**. "
|
| 184 |
-
"Extensions prises: " + ", ".join(sorted(TEXT_EXTS))
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
with gr.Row():
|
| 188 |
-
index_use_selected = gr.Checkbox(label="Indexer uniquement les fichiers sélectionnés ci-dessous", value=False)
|
| 189 |
-
index_base_url = gr.Textbox(label="URL du service d'indexation (optionnel)", placeholder="https://your-indexer.hf.space", value=os.getenv("REMOTE_INDEX_URL", "https://chouchouvs-deepindex.hf.space"))
|
| 190 |
-
|
| 191 |
-
with gr.Row():
|
| 192 |
-
index_files_dd = gr.Dropdown(label="Fichiers à indexer", choices=[], multiselect=True, scale=2)
|
| 193 |
-
index_refresh_btn = gr.Button("🔄 Rafraîchir la liste")
|
| 194 |
-
|
| 195 |
-
with gr.Row():
|
| 196 |
-
chunk_size = gr.Slider(128, 2048, value=512, step=64, label="Taille des chunks")
|
| 197 |
-
overlap = gr.Slider(0, 256, value=50, step=10, label="Chevauchement")
|
| 198 |
-
batch_size = gr.Slider(1, 16, value=8, step=1, label="Taille batch")
|
| 199 |
-
store_text = gr.Checkbox(label="Stocker le texte brut", value=True)
|
| 200 |
-
|
| 201 |
-
index_btn = gr.Button("🚀 Lancer l'indexation intelligente", variant="primary")
|
| 202 |
-
index_log = gr.Textbox(label="Journal d'indexation", lines=15, interactive=False)
|
| 203 |
-
|
| 204 |
-
# Callbacks
|
| 205 |
-
index_refresh_btn.click(fn=lambda ws: _list_files_for_ws(ws), inputs=[gr.State(load_last_workspace_name())], outputs=index_files_dd)
|
| 206 |
-
# pour l'initialisation on expose une action: ws dropdown load (ci-dessous dans la barre d'état)
|
| 207 |
-
index_btn.click(
|
| 208 |
-
_launch_index_remote,
|
| 209 |
-
inputs=[
|
| 210 |
-
gr.State(load_last_workspace_name()), # workspace actif
|
| 211 |
-
index_use_selected,
|
| 212 |
-
index_files_dd,
|
| 213 |
-
chunk_size,
|
| 214 |
-
overlap,
|
| 215 |
-
batch_size,
|
| 216 |
-
store_text,
|
| 217 |
-
index_base_url,
|
| 218 |
-
],
|
| 219 |
-
outputs=index_log,
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
-
# --- Onglet Workspaces / Git (simplifié) ---
|
| 223 |
-
with gr.Tab("🧰 Workspaces"):
|
| 224 |
-
gr.Markdown("Gestion des workspaces locaux (création / suppression / navigation).")
|
| 225 |
-
ws_dd = gr.Dropdown(label="Workspace", choices=[], value=None)
|
| 226 |
-
refresh_ws = gr.Button("🔄 Rafraîchir")
|
| 227 |
-
ws_new = gr.Textbox(label="Nouveau nom de workspace", placeholder="nom")
|
| 228 |
-
ws_create_btn = gr.Button("Créer workspace")
|
| 229 |
-
ws_delete_btn = gr.Button("Supprimer workspace (attention)")
|
| 230 |
-
ws_status_md = gr.Markdown("")
|
| 231 |
-
|
| 232 |
-
refresh_ws.click(_load_ws_choices, outputs=ws_dd)
|
| 233 |
-
ws_create_btn.click(lambda name: create_workspace(name) and "✅ Workspace créé" or "❌", inputs=ws_new, outputs=ws_status_md)
|
| 234 |
-
ws_delete_btn.click(lambda name: (delete_workspace(name), "✅ Suppression demandée")[1], inputs=ws_dd, outputs=ws_status_md)
|
| 235 |
-
|
| 236 |
-
# --- Onglet About / Config ---
|
| 237 |
-
with gr.Tab("⚙️ Config"):
|
| 238 |
-
gr.Markdown("Configuration et variables d'environnement")
|
| 239 |
-
cfg_md = gr.Markdown(config_markdown(load_config()))
|
| 240 |
-
reload_env_btn = gr.Button("Recharger config")
|
| 241 |
-
reload_env_btn.click(lambda: config_markdown(load_config()), None, cfg_md)
|
| 242 |
-
|
| 243 |
-
return demo
|
| 244 |
|
| 245 |
if __name__ == "__main__":
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
demo.queue()
|
| 251 |
-
except Exception:
|
| 252 |
-
LOG.debug("queue() non disponible / déjà activée")
|
| 253 |
-
|
| 254 |
-
workspaces_root = os.getenv("WORKSPACES_ROOT", "/workspace/workspaces")
|
| 255 |
-
tmp_dir = tempfile.gettempdir()
|
| 256 |
-
demo.launch(
|
| 257 |
-
server_name="0.0.0.0",
|
| 258 |
-
server_port=port,
|
| 259 |
-
show_api=False,
|
| 260 |
-
share=False,
|
| 261 |
-
show_error=True,
|
| 262 |
-
allowed_paths=[workspaces_root, tmp_dir, os.getcwd()],
|
| 263 |
-
)
|
|
|
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
from __future__ import annotations
|
| 3 |
+
|
| 4 |
import os
|
|
|
|
| 5 |
import time
|
| 6 |
+
import uuid
|
| 7 |
+
import random
|
| 8 |
import logging
|
| 9 |
+
import hashlib
|
| 10 |
+
import re
|
| 11 |
+
import json
|
| 12 |
+
from typing import List, Optional, Dict, Any, Tuple
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import requests
|
| 16 |
+
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException, Query
|
| 17 |
+
from pydantic import BaseModel, Field
|
| 18 |
+
|
| 19 |
+
# ======================================================================================
|
| 20 |
+
# Logging
|
| 21 |
+
# ======================================================================================
|
| 22 |
+
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
|
| 23 |
+
LOG = logging.getLogger("remote_indexer")
|
| 24 |
+
|
| 25 |
+
# ======================================================================================
|
| 26 |
+
# ENV (config)
|
| 27 |
+
# ======================================================================================
|
| 28 |
+
|
| 29 |
+
# Ordre des backends d'embeddings. Ex: "deepinfra,hf"
|
| 30 |
+
EMB_BACKEND_ORDER = [
|
| 31 |
+
s.strip().lower()
|
| 32 |
+
for s in os.getenv("EMB_BACKEND_ORDER", os.getenv("EMB_BACKEND", "deepinfra,hf")).split(",")
|
| 33 |
+
if s.strip()
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
# --- DeepInfra Embeddings (OpenAI-like) ---
|
| 37 |
+
DI_TOKEN = os.getenv("DEEPINFRA_API_KEY", "").strip()
|
| 38 |
+
DI_MODEL = os.getenv("DEEPINFRA_EMBED_MODEL", "BAAI/bge-m3").strip()
|
| 39 |
+
DI_URL = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/openai/embeddings").strip()
|
| 40 |
+
DI_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
|
| 41 |
+
|
| 42 |
+
# --- Hugging Face Inference API ---
|
| 43 |
+
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
|
| 44 |
+
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2").strip()
|
| 45 |
+
HF_URL_PIPE = os.getenv("HF_API_URL_PIPELINE", "").strip() or (
|
| 46 |
+
f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}"
|
| 47 |
)
|
| 48 |
+
HF_URL_MODL = os.getenv("HF_API_URL_MODELS", "").strip() or (
|
| 49 |
+
f"https://api-inference.huggingface.co/models/{HF_MODEL}"
|
| 50 |
+
)
|
| 51 |
+
HF_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
|
| 52 |
+
HF_WAIT = os.getenv("HF_WAIT_FOR_MODEL", "true").lower() in ("1", "true", "yes", "on")
|
| 53 |
+
|
| 54 |
+
# --- Retries / backoff ---
|
| 55 |
+
RETRY_MAX = int(os.getenv("EMB_RETRY_MAX", "6"))
|
| 56 |
+
RETRY_BASE_SEC = float(os.getenv("EMB_RETRY_BASE", "1.6"))
|
| 57 |
+
RETRY_JITTER = float(os.getenv("EMB_RETRY_JITTER", "0.35"))
|
| 58 |
+
|
| 59 |
+
# --- Vector store (Qdrant / Memory fallback) ---
|
| 60 |
+
VECTOR_STORE = os.getenv("VECTOR_STORE", "qdrant").strip().lower()
|
| 61 |
+
QDRANT_URL = os.getenv("QDRANT_URL", "").strip()
|
| 62 |
+
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
|
| 63 |
+
|
| 64 |
+
# IDs déterministes activés ?
|
| 65 |
+
QDRANT_DETERMINISTIC_IDS = os.getenv("QDRANT_DETERMINISTIC_IDS", "true").lower() in ("1","true","yes","on")
|
| 66 |
+
QDRANT_ID_MODE = os.getenv("QDRANT_ID_MODE", "uuid").strip().lower() # uuid|int
|
| 67 |
+
|
| 68 |
+
# Wipe automatique avant chaque /index (optionnel)
|
| 69 |
+
WIPE_BEFORE_INDEX = os.getenv("WIPE_BEFORE_INDEX", "false").lower() in ("1","true","yes","on")
|
| 70 |
+
|
| 71 |
+
# --- Auth d’API de ce service (simple header) ---
|
| 72 |
+
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()
|
| 73 |
+
|
| 74 |
+
LOG.info(f"Embeddings backend order = {EMB_BACKEND_ORDER}")
|
| 75 |
+
LOG.info(f"HF pipeline URL = {HF_URL_PIPE}")
|
| 76 |
+
LOG.info(f"HF models URL = {HF_URL_MODL}")
|
| 77 |
+
LOG.info(f"VECTOR_STORE = {VECTOR_STORE}")
|
| 78 |
+
|
| 79 |
+
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN:
|
| 80 |
+
LOG.warning("DEEPINFRA_API_KEY manquant — tentatives DeepInfra échoueront.")
|
| 81 |
+
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
|
| 82 |
+
LOG.warning("HF_API_TOKEN manquant — tentatives HF échoueront.")
|
| 83 |
+
|
| 84 |
+
# ======================================================================================
|
| 85 |
+
# Vector Stores (Memory + Qdrant)
|
| 86 |
+
# ======================================================================================
|
| 87 |
try:
|
| 88 |
+
from qdrant_client import QdrantClient
|
| 89 |
+
from qdrant_client.http.models import VectorParams, Distance, PointStruct
|
| 90 |
except Exception:
|
| 91 |
+
QdrantClient = None
|
| 92 |
+
PointStruct = None
|
| 93 |
+
|
| 94 |
+
class BaseStore:
|
| 95 |
+
def ensure_collection(self, name: str, dim: int): ...
|
| 96 |
+
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int: ...
|
| 97 |
+
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]: ...
|
| 98 |
+
def wipe(self, name: str): ...
|
| 99 |
+
|
| 100 |
+
class MemoryStore(BaseStore):
|
| 101 |
+
"""Store en mémoire (volatile) — fallback/tests."""
|
| 102 |
+
def __init__(self):
|
| 103 |
+
self.db: Dict[str, Dict[str, Any]] = {} # name -> {"vecs":[np.ndarray], "payloads":[dict], "dim":int}
|
| 104 |
+
|
| 105 |
+
def ensure_collection(self, name: str, dim: int):
|
| 106 |
+
self.db.setdefault(name, {"vecs": [], "payloads": [], "dim": dim})
|
| 107 |
+
|
| 108 |
+
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int:
|
| 109 |
+
if name not in self.db:
|
| 110 |
+
raise RuntimeError(f"MemoryStore: collection {name} inconnue")
|
| 111 |
+
if len(vectors) != len(payloads):
|
| 112 |
+
raise ValueError("MemoryStore.upsert: tailles vectors/payloads incohérentes")
|
| 113 |
+
self.db[name]["vecs"].extend([np.asarray(v, dtype=np.float32) for v in vectors])
|
| 114 |
+
self.db[name]["payloads"].extend(payloads)
|
| 115 |
+
return len(vectors)
|
| 116 |
+
|
| 117 |
+
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
|
| 118 |
+
if name not in self.db or not self.db[name]["vecs"]:
|
| 119 |
+
return []
|
| 120 |
+
mat = np.vstack(self.db[name]["vecs"]).astype(np.float32) # [N, dim]
|
| 121 |
+
q = query_vec.reshape(1, -1).astype(np.float32)
|
| 122 |
+
sims = (mat @ q.T).ravel() # cosine (embeddings normalisés en amont)
|
| 123 |
+
top_idx = np.argsort(-sims)[:top_k]
|
| 124 |
+
out = []
|
| 125 |
+
for i in top_idx:
|
| 126 |
+
pl = dict(self.db[name]["payloads"][i]); pl["_score"] = float(sims[i])
|
| 127 |
+
out.append(pl)
|
| 128 |
+
return out
|
| 129 |
+
|
| 130 |
+
def wipe(self, name: str):
|
| 131 |
+
self.db.pop(name, None)
|
| 132 |
+
|
| 133 |
+
def _stable_point_id_uuid(collection: str, payload: Dict[str, Any]) -> str:
|
| 134 |
+
"""
|
| 135 |
+
UUID v5 déterministe: uuid5(NAMESPACE_URL, 'collection|path|chunk|start|end|BLAKE8(text)')
|
| 136 |
+
"""
|
| 137 |
+
path = str(payload.get("path", ""))
|
| 138 |
+
chunk = str(payload.get("chunk", ""))
|
| 139 |
+
start = str(payload.get("start", ""))
|
| 140 |
+
end = str(payload.get("end", ""))
|
| 141 |
+
text = payload.get("text", "")
|
| 142 |
+
# hash court du texte pour stabiliser l’empreinte sans tout concaténer
|
| 143 |
+
h = hashlib.blake2b((text or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 144 |
+
base = f"{collection}|{path}|{chunk}|{start}|{end}|{h}"
|
| 145 |
+
return str(uuid.uuid5(uuid.NAMESPACE_URL, base))
|
| 146 |
+
|
| 147 |
+
class QdrantStore(BaseStore):
|
| 148 |
+
"""Store Qdrant — IDs UUID déterministes (par défaut) ou entiers séquentiels."""
|
| 149 |
+
def __init__(self, url: str, api_key: Optional[str] = None,
|
| 150 |
+
deterministic_ids: bool = True, id_mode: str = "uuid"):
|
| 151 |
+
if QdrantClient is None or PointStruct is None:
|
| 152 |
+
raise RuntimeError("qdrant_client non disponible")
|
| 153 |
+
self.client = QdrantClient(url=url, api_key=api_key if api_key else None)
|
| 154 |
+
self._next_ids: Dict[str, int] = {}
|
| 155 |
+
self._deterministic = deterministic_ids
|
| 156 |
+
self._id_mode = id_mode if id_mode in ("uuid", "int") else "uuid"
|
| 157 |
+
|
| 158 |
+
def _init_next_id(self, name: str):
|
| 159 |
+
try:
|
| 160 |
+
cnt = self.client.count(collection_name=name, exact=True).count
|
| 161 |
+
except Exception:
|
| 162 |
+
cnt = 0
|
| 163 |
+
self._next_ids[name] = int(cnt)
|
| 164 |
+
|
| 165 |
+
def ensure_collection(self, name: str, dim: int):
|
| 166 |
+
try:
|
| 167 |
+
self.client.get_collection(name)
|
| 168 |
+
except Exception:
|
| 169 |
+
self.client.create_collection(
|
| 170 |
+
collection_name=name,
|
| 171 |
+
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
|
| 172 |
+
)
|
| 173 |
+
if name not in self._next_ids:
|
| 174 |
+
self._init_next_id(name)
|
| 175 |
+
|
| 176 |
+
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int:
|
| 177 |
+
if vectors is None or len(vectors) == 0:
|
| 178 |
+
return 0
|
| 179 |
+
if len(vectors) != len(payloads):
|
| 180 |
+
raise ValueError("QdrantStore.upsert: tailles vectors/payloads incohérentes")
|
| 181 |
+
|
| 182 |
+
points: List[PointStruct] = []
|
| 183 |
+
added = 0
|
| 184 |
+
|
| 185 |
+
if self._deterministic and self._id_mode == "uuid":
|
| 186 |
+
# UUID déterministes => Qdrant Cloud OK, remplace si existe
|
| 187 |
+
seen = set()
|
| 188 |
+
for v, pl in zip(vectors, payloads):
|
| 189 |
+
pid = _stable_point_id_uuid(name, pl)
|
| 190 |
+
if pid in seen:
|
| 191 |
+
continue # dédup intra-batch
|
| 192 |
+
seen.add(pid)
|
| 193 |
+
points.append(PointStruct(id=pid,
|
| 194 |
+
vector=np.asarray(v, dtype=np.float32).tolist(),
|
| 195 |
+
payload=pl))
|
| 196 |
+
if points:
|
| 197 |
+
self.client.upsert(collection_name=name, points=points)
|
| 198 |
+
added = len(points)
|
| 199 |
+
|
| 200 |
+
elif self._deterministic and self._id_mode == "int":
|
| 201 |
+
# int déterministes (peu utile si on veut remplacer)
|
| 202 |
+
seen = set()
|
| 203 |
+
for v, pl in zip(vectors, payloads):
|
| 204 |
+
pid_str = _stable_point_id_uuid(name, pl)
|
| 205 |
+
pid_int = uuid.UUID(pid_str).int >> 64
|
| 206 |
+
if pid_int in seen:
|
| 207 |
+
continue
|
| 208 |
+
seen.add(pid_int)
|
| 209 |
+
points.append(PointStruct(id=int(pid_int),
|
| 210 |
+
vector=np.asarray(v, dtype=np.float32).tolist(),
|
| 211 |
+
payload=pl))
|
| 212 |
+
if points:
|
| 213 |
+
self.client.upsert(collection_name=name, points=points)
|
| 214 |
+
added = len(points)
|
| 215 |
+
|
| 216 |
+
else:
|
| 217 |
+
# IDs séquentiels -> append-only
|
| 218 |
+
if name not in self._next_ids:
|
| 219 |
+
self._init_next_id(name)
|
| 220 |
+
start = self._next_ids[name]
|
| 221 |
+
for i, (v, pl) in enumerate(zip(vectors, payloads)):
|
| 222 |
+
points.append(PointStruct(id=start + i,
|
| 223 |
+
vector=np.asarray(v, dtype=np.float32).tolist(),
|
| 224 |
+
payload=pl))
|
| 225 |
+
if points:
|
| 226 |
+
self.client.upsert(collection_name=name, points=points)
|
| 227 |
+
added = len(points)
|
| 228 |
+
self._next_ids[name] += added
|
| 229 |
+
|
| 230 |
+
LOG.debug(f"QdrantStore.upsert: +{added} points (deterministic={self._deterministic}, mode={self._id_mode})")
|
| 231 |
+
return added
|
| 232 |
+
|
| 233 |
+
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
|
| 234 |
+
qv = query_vec[0].astype(np.float32).tolist() if query_vec.ndim == 2 else query_vec.astype(np.float32).tolist()
|
| 235 |
+
res = self.client.search(collection_name=name, query_vector=qv, limit=int(top_k))
|
| 236 |
+
out = []
|
| 237 |
+
for p in res:
|
| 238 |
+
pl = p.payload or {}
|
| 239 |
+
try:
|
| 240 |
+
pl["_score"] = float(p.score)
|
| 241 |
+
except Exception:
|
| 242 |
+
pl["_score"] = None
|
| 243 |
+
out.append(pl)
|
| 244 |
+
return out
|
| 245 |
+
|
| 246 |
+
def wipe(self, name: str):
|
| 247 |
+
try:
|
| 248 |
+
self.client.delete_collection(name)
|
| 249 |
+
except Exception:
|
| 250 |
+
pass
|
| 251 |
+
self._next_ids.pop(name, None)
|
| 252 |
+
|
| 253 |
+
# Initialisation du store actif
|
| 254 |
try:
|
| 255 |
+
if VECTOR_STORE == "qdrant" and QDRANT_URL:
|
| 256 |
+
STORE: BaseStore = QdrantStore(
|
| 257 |
+
QDRANT_URL,
|
| 258 |
+
api_key=QDRANT_API if QDRANT_API else None,
|
| 259 |
+
deterministic_ids=QDRANT_DETERMINISTIC_IDS,
|
| 260 |
+
id_mode=QDRANT_ID_MODE,
|
| 261 |
+
)
|
| 262 |
+
_ = STORE.client.get_collections() # ping
|
| 263 |
+
LOG.info("Connecté à Qdrant.")
|
| 264 |
+
VECTOR_STORE_ACTIVE = "QdrantStore"
|
| 265 |
else:
|
| 266 |
+
raise RuntimeError("Qdrant non configuré, fallback mémoire.")
|
| 267 |
+
except Exception as e:
|
| 268 |
+
LOG.error(f"Qdrant indisponible (Connexion Qdrant impossible: {e}) — fallback en mémoire.")
|
| 269 |
+
STORE = MemoryStore()
|
| 270 |
+
VECTOR_STORE_ACTIVE = "MemoryStore"
|
| 271 |
+
LOG.warning("Vector store: MEMORY (fallback). Les données sont volatiles (perdues au restart).")
|
| 272 |
+
|
| 273 |
+
# ======================================================================================
|
| 274 |
+
# Pydantic I/O
|
| 275 |
+
# ======================================================================================
|
| 276 |
+
|
| 277 |
+
class FileIn(BaseModel):
|
| 278 |
+
path: Optional[str] = "" # tolérancemajeure: accepte None
|
| 279 |
+
text: Optional[str] = "" # idem
|
| 280 |
+
|
| 281 |
+
class IndexRequest(BaseModel):
|
| 282 |
+
project_id: str = Field(..., min_length=1)
|
| 283 |
+
files: List[FileIn]
|
| 284 |
+
chunk_size: int = 1200
|
| 285 |
+
overlap: int = 200
|
| 286 |
+
batch_size: int = 8
|
| 287 |
+
store_text: bool = True
|
| 288 |
+
|
| 289 |
+
class QueryRequest(BaseModel):
|
| 290 |
+
project_id: str
|
| 291 |
+
query: str
|
| 292 |
+
top_k: int = 6
|
| 293 |
+
|
| 294 |
+
class StatusBody(BaseModel):
|
| 295 |
+
job_id: str
|
| 296 |
+
|
| 297 |
+
# ======================================================================================
|
| 298 |
+
# Jobs store (mémoire)
|
| 299 |
+
# ======================================================================================
|
| 300 |
+
JOBS: Dict[str, Dict[str, Any]] = {} # {job_id: {"status": "...", "logs": [...], "created": ts}}
|
| 301 |
+
|
| 302 |
+
def _append_log(job_id: str, line: str):
|
| 303 |
+
job = JOBS.get(job_id)
|
| 304 |
+
if job:
|
| 305 |
+
job["logs"].append(line)
|
| 306 |
+
|
| 307 |
+
def _set_status(job_id: str, status: str):
|
| 308 |
+
job = JOBS.get(job_id)
|
| 309 |
+
if job:
|
| 310 |
+
job["status"] = status
|
| 311 |
+
|
| 312 |
+
def _auth(x_auth: Optional[str]):
|
| 313 |
+
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
|
| 314 |
+
raise HTTPException(401, "Unauthorized")
|
| 315 |
|
| 316 |
+
# ======================================================================================
|
| 317 |
+
# Embeddings backends + retry/fallback
|
| 318 |
+
# ======================================================================================
|
| 319 |
+
|
| 320 |
+
def _retry_sleep(attempt: int) -> float:
|
| 321 |
+
back = (RETRY_BASE_SEC ** attempt)
|
| 322 |
+
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
|
| 323 |
+
return max(0.25, back * jitter)
|
| 324 |
+
|
| 325 |
+
def _normalize_rows(arr: np.ndarray) -> np.ndarray:
|
| 326 |
+
arr = np.asarray(arr, dtype=np.float32)
|
| 327 |
+
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 328 |
+
return (arr / norms).astype(np.float32)
|
| 329 |
+
|
| 330 |
+
def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 331 |
+
if not DI_TOKEN:
|
| 332 |
+
raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
|
| 333 |
+
headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"}
|
| 334 |
+
payload = {"model": DI_MODEL, "input": batch}
|
| 335 |
+
r = requests.post(DI_URL, headers=headers, json=payload, timeout=DI_TIMEOUT)
|
| 336 |
+
size = int(r.headers.get("Content-Length", "0") or 0)
|
| 337 |
+
if r.status_code >= 400:
|
| 338 |
+
LOG.error(f"DeepInfra error {r.status_code}: {r.text[:1000]}")
|
| 339 |
+
r.raise_for_status()
|
| 340 |
+
js = r.json()
|
| 341 |
+
data = js.get("data")
|
| 342 |
+
if not isinstance(data, list) or not data:
|
| 343 |
+
raise RuntimeError(f"DeepInfra embeddings: réponse invalide {js}")
|
| 344 |
+
embs = [d.get("embedding") for d in data]
|
| 345 |
+
arr = np.asarray(embs, dtype=np.float32)
|
| 346 |
+
if arr.ndim != 2:
|
| 347 |
+
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
|
| 348 |
+
return _normalize_rows(arr), size
|
| 349 |
+
|
| 350 |
+
def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 351 |
+
if not HF_TOKEN:
|
| 352 |
+
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
|
| 353 |
+
headers = {
|
| 354 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
| 355 |
+
"Content-Type": "application/json",
|
| 356 |
+
}
|
| 357 |
+
if HF_WAIT:
|
| 358 |
+
headers["X-Wait-For-Model"] = "true"
|
| 359 |
+
headers["X-Use-Cache"] = "true"
|
| 360 |
+
|
| 361 |
+
def _call(url: str, payload: Dict[str, Any], extra_headers: Optional[Dict[str, str]] = None):
|
| 362 |
+
h = dict(headers)
|
| 363 |
+
if extra_headers:
|
| 364 |
+
h.update(extra_headers)
|
| 365 |
+
r = requests.post(url, headers=h, json=payload, timeout=HF_TIMEOUT)
|
| 366 |
+
return r
|
| 367 |
+
|
| 368 |
+
payload = {"inputs": batch if len(batch) > 1 else batch[0]}
|
| 369 |
+
r = _call(HF_URL_PIPE, payload)
|
| 370 |
+
size = int(r.headers.get("Content-Length", "0") or 0)
|
| 371 |
+
if r.status_code == 404:
|
| 372 |
+
LOG.error("HF error 404: Not Found")
|
| 373 |
+
LOG.warning(f"HF endpoint {HF_URL_PIPE} non dispo (404), fallback vers alternative ...")
|
| 374 |
+
elif r.status_code >= 400:
|
| 375 |
+
LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
|
| 376 |
+
r.raise_for_status()
|
| 377 |
+
else:
|
| 378 |
+
data = r.json()
|
| 379 |
+
arr = np.array(data, dtype=np.float32)
|
| 380 |
+
if arr.ndim == 3:
|
| 381 |
+
arr = arr.mean(axis=1)
|
| 382 |
+
if arr.ndim == 1:
|
| 383 |
+
arr = arr.reshape(1, -1)
|
| 384 |
+
if arr.ndim != 2:
|
| 385 |
+
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
|
| 386 |
+
return _normalize_rows(arr), size
|
| 387 |
+
|
| 388 |
+
r2 = _call(HF_URL_MODL, payload)
|
| 389 |
+
size2 = int(r2.headers.get("Content-Length", "0") or 0)
|
| 390 |
+
if r2.status_code >= 400:
|
| 391 |
+
LOG.error(f"HF error {r2.status_code}: {r2.text[:1000]}")
|
| 392 |
+
if r2.status_code == 400 and "SentenceSimilarityPipeline" in (r2.text or ""):
|
| 393 |
+
LOG.warning("HF MODELS a choisi Similarity -> retry avec ?task=feature-extraction + X-Task")
|
| 394 |
+
r3 = _call(
|
| 395 |
+
HF_URL_MODL + "?task=feature-extraction",
|
| 396 |
+
payload,
|
| 397 |
+
extra_headers={"X-Task": "feature-extraction"}
|
| 398 |
+
)
|
| 399 |
+
size3 = int(r3.headers.get("Content-Length", "0") or 0)
|
| 400 |
+
if r3.status_code >= 400:
|
| 401 |
+
LOG.error(f"HF error {r3.status_code}: {r3.text[:1000]}")
|
| 402 |
+
r3.raise_for_status()
|
| 403 |
+
data3 = r3.json()
|
| 404 |
+
arr3 = np.array(data3, dtype=np.float32)
|
| 405 |
+
if arr3.ndim == 3:
|
| 406 |
+
arr3 = arr3.mean(axis=1)
|
| 407 |
+
if arr3.ndim == 1:
|
| 408 |
+
arr3 = arr3.reshape(1, -1)
|
| 409 |
+
if arr3.ndim != 2:
|
| 410 |
+
raise RuntimeError(f"HF: unexpected embeddings shape: {arr3.shape}")
|
| 411 |
+
return _normalize_rows(arr3), size3
|
| 412 |
+
else:
|
| 413 |
+
r2.raise_for_status()
|
| 414 |
+
data2 = r2.json()
|
| 415 |
+
arr2 = np.array(data2, dtype=np.float32)
|
| 416 |
+
if arr2.ndim == 3:
|
| 417 |
+
arr2 = arr2.mean(axis=1)
|
| 418 |
+
if arr2.ndim == 1:
|
| 419 |
+
arr2 = arr2.reshape(1, -1)
|
| 420 |
+
if arr2.ndim != 2:
|
| 421 |
+
raise RuntimeError(f"HF: unexpected embeddings shape: {arr2.shape}")
|
| 422 |
+
return _normalize_rows(arr2), size2
|
| 423 |
+
|
| 424 |
+
def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
| 425 |
+
last_exc = None
|
| 426 |
+
for attempt in range(RETRY_MAX):
|
| 427 |
+
try:
|
| 428 |
+
if job_id:
|
| 429 |
+
_append_log(job_id, f"{label}: try {attempt+1}/{RETRY_MAX} (batch={len(batch)})")
|
| 430 |
+
return func(batch)
|
| 431 |
+
except requests.HTTPError as he:
|
| 432 |
+
code = he.response.status_code if he.response is not None else "HTTP"
|
| 433 |
+
retriable = code in (429, 500, 502, 503, 504)
|
| 434 |
+
if not retriable:
|
| 435 |
+
raise
|
| 436 |
+
sleep_s = _retry_sleep(attempt)
|
| 437 |
+
msg = f"{label}: HTTP {code}, retry in {sleep_s:.1f}s"
|
| 438 |
+
LOG.warning(msg); _append_log(job_id, msg)
|
| 439 |
+
time.sleep(sleep_s)
|
| 440 |
+
last_exc = he
|
| 441 |
+
except Exception as e:
|
| 442 |
+
sleep_s = _retry_sleep(attempt)
|
| 443 |
+
msg = f"{label}: error {type(e).__name__}: {e}, retry in {sleep_s:.1f}s"
|
| 444 |
+
LOG.warning(msg); _append_log(job_id, msg)
|
| 445 |
+
time.sleep(sleep_s)
|
| 446 |
+
last_exc = e
|
| 447 |
+
raise RuntimeError(f"{label}: retries exhausted: {last_exc}")
|
| 448 |
+
|
| 449 |
+
def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
| 450 |
+
last_err = None
|
| 451 |
+
for b in EMB_BACKEND_ORDER:
|
| 452 |
+
if b == "deepinfra":
|
| 453 |
+
try:
|
| 454 |
+
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
| 455 |
+
except Exception as e:
|
| 456 |
+
last_err = e; _append_log(job_id, f"DeepInfra failed: {e}."); LOG.error(f"DeepInfra failed: {e}")
|
| 457 |
+
elif b == "hf":
|
| 458 |
+
try:
|
| 459 |
+
return _call_with_retries(_hf_post_embeddings_once, batch, "HF", job_id)
|
| 460 |
+
except Exception as e:
|
| 461 |
+
last_err = e; _append_log(job_id, f"HF failed: {e}."); LOG.error(f"HF failed: {e}")
|
| 462 |
+
if "SentenceSimilarityPipeline" in str(e) and "deepinfra" not in EMB_BACKEND_ORDER:
|
| 463 |
+
_append_log(job_id, "Auto-fallback DeepInfra (HF => SentenceSimilarity).")
|
| 464 |
+
try:
|
| 465 |
+
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
| 466 |
+
except Exception as e2:
|
| 467 |
+
last_err = e2; _append_log(job_id, f"DeepInfra failed after HF: {e2}."); LOG.error(f"DeepInfra failed after HF: {e2}")
|
| 468 |
+
else:
|
| 469 |
+
_append_log(job_id, f"Backend inconnu ignoré: {b}")
|
| 470 |
+
raise RuntimeError(f"Tous les backends ont échoué: {last_err}")
|
| 471 |
|
| 472 |
+
# ======================================================================================
|
| 473 |
+
# Helpers chunking
|
| 474 |
+
# ======================================================================================
|
| 475 |
|
| 476 |
+
def _chunk_with_spans(text: str, size: int, overlap: int):
|
| 477 |
+
n = len(text or "")
|
| 478 |
+
if size <= 0:
|
| 479 |
+
yield (0, n, text); return
|
| 480 |
+
i = 0
|
| 481 |
+
while i < n:
|
| 482 |
+
j = min(n, i + size)
|
| 483 |
+
yield (i, j, text[i:j])
|
| 484 |
+
i = max(0, j - overlap)
|
| 485 |
+
if i >= n:
|
| 486 |
+
break
|
| 487 |
|
| 488 |
+
def _clean_chunk_text(text: str) -> str:
|
| 489 |
+
"""
|
| 490 |
+
Nettoyage simple des fragments JSON / artefacts:
|
| 491 |
+
- supprime un champ "indexed_at" tronqué à la fin,
|
| 492 |
+
- supprime accolades/caractères isolés en début/fin,
|
| 493 |
+
- compacte sauts de ligne multiples,
|
| 494 |
+
- tente d'extraire des valeurs textuelles si le chunk ressemble fortement à du JSON.
|
| 495 |
+
"""
|
| 496 |
+
if not text:
|
| 497 |
+
return text
|
| 498 |
+
t = (text or "").strip()
|
| 499 |
+
|
| 500 |
+
# retirer un suffixe typique: , "indexed_at": "2025-..."}}
|
| 501 |
+
t = re.sub(r',\s*"indexed_at"\s*:\s*"[^"]*"\s*}+\s*$', '', t, flags=re.IGNORECASE)
|
| 502 |
+
|
| 503 |
+
# retirer d'autres clés timestamps communes à la fin si tronquées
|
| 504 |
+
t = re.sub(r',\s*"(created_at|timestamp|time|date)"\s*:\s*"[^"]*"\s*}+\s*$', '', t, flags=re.IGNORECASE)
|
| 505 |
+
|
| 506 |
+
# retirer accolades ou crochets seuls en début/fin
|
| 507 |
+
t = re.sub(r'^[\s\]\}\,]+', '', t)
|
| 508 |
+
t = re.sub(r'[\s\]\}\,]+$', '', t)
|
| 509 |
+
|
| 510 |
+
# si le chunk ressemble majoritairement à du JSON (beaucoup de ":" ou "{"), essayer d'en extraire les valeurs textuelles
|
| 511 |
+
if t.count(':') >= 3 and (t.count('{') + t.count('}')) >= 1:
|
| 512 |
+
try:
|
| 513 |
+
j = json.loads(t)
|
| 514 |
+
if isinstance(j, dict):
|
| 515 |
+
# concatène les valeurs textuelles pertinentes
|
| 516 |
+
vals = []
|
| 517 |
+
for v in j.values():
|
| 518 |
+
if isinstance(v, (str, int, float)):
|
| 519 |
+
vals.append(str(v))
|
| 520 |
+
if vals:
|
| 521 |
+
t = " ".join(vals)
|
| 522 |
+
except Exception:
|
| 523 |
+
# ignore, on garde t tel quel
|
| 524 |
+
pass
|
| 525 |
+
|
| 526 |
+
# compacter sauts de ligne
|
| 527 |
+
t = re.sub(r'\n{3,}', '\n\n', t)
|
| 528 |
+
return t.strip()
|
| 529 |
+
|
| 530 |
+
# ======================================================================================
|
| 531 |
+
# Background task : indexation — VERSION CORRIGÉE (ajouts anti-dup & robustesse)
|
| 532 |
+
# ======================================================================================
|
| 533 |
+
|
| 534 |
+
def run_index_job(job_id: str, req: IndexRequest):
|
| 535 |
try:
|
| 536 |
+
_set_status(job_id, "running")
|
| 537 |
+
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER} | store={VECTOR_STORE} (deterministic_ids={QDRANT_DETERMINISTIC_IDS}, mode={QDRANT_ID_MODE})")
|
| 538 |
+
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
|
| 539 |
+
|
| 540 |
+
# ensemble de hashes de chunks déjà vus dans ce job (dédup intra-job)
|
| 541 |
+
seen_chunk_hashes = set()
|
| 542 |
+
|
| 543 |
+
# --- DEBUG DIAGNOSTIC (INSÈRE ICI) ---
|
| 544 |
+
try:
|
| 545 |
+
N_SAMPLE = 6
|
| 546 |
+
sample = req.files[:N_SAMPLE]
|
| 547 |
+
seen_hashes = {}
|
| 548 |
+
for fidx, fi in enumerate(sample, 1):
|
| 549 |
+
p = (getattr(fi, "path", "") or "") or ""
|
| 550 |
+
t = (getattr(fi, "text", "") or "") or ""
|
| 551 |
+
h = hashlib.blake2b((t or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 552 |
+
seen_hashes.setdefault(h, []).append(p)
|
| 553 |
+
LOG.info(f"[{job_id}] recv file #{fidx}: path={p!r} len_text={len(t)} hash8={h} preview={repr(t[:120])}")
|
| 554 |
+
if len(req.files) > N_SAMPLE:
|
| 555 |
+
LOG.info(f"[{job_id}] ... and {len(req.files)-N_SAMPLE} more files")
|
| 556 |
+
if len(seen_hashes) == 1 and len(req.files) > 1:
|
| 557 |
+
_append_log(job_id, "⚠️ All received files appear IDENTICAL (same hash). Possible client-side bug.")
|
| 558 |
+
LOG.warning("[%s] All files identical by hash8=%s", job_id, list(seen_hashes.keys())[0])
|
| 559 |
+
except Exception as _e:
|
| 560 |
+
LOG.exception("Debug sample failed: %s", _e)
|
| 561 |
+
# --- end debug block ---
|
| 562 |
+
|
| 563 |
+
col = f"proj_{req.project_id}"
|
| 564 |
+
|
| 565 |
+
# Option: wipe avant index
|
| 566 |
+
if WIPE_BEFORE_INDEX:
|
| 567 |
+
try:
|
| 568 |
+
STORE.wipe(col)
|
| 569 |
+
_append_log(job_id, f"Wiped existing collection: {col}")
|
| 570 |
+
except Exception as e:
|
| 571 |
+
_append_log(job_id, f"Wipe failed (ignored): {e}")
|
| 572 |
+
|
| 573 |
+
# --- WARMUP: calculer un embedding de test pour déterminer la dimension (dim) ---
|
| 574 |
+
# On prend un chunk de départ (ou une string 'warmup' si pas de fichiers)
|
| 575 |
+
if req.files:
|
| 576 |
+
warm_text = next(_chunk_with_spans((req.files[0].text or "") , req.chunk_size, req.overlap))[2]
|
| 577 |
+
else:
|
| 578 |
+
warm_text = "warmup"
|
| 579 |
+
try:
|
| 580 |
+
embs, sz = _post_embeddings([warm_text], job_id=job_id)
|
| 581 |
+
if embs is None or embs.ndim != 2:
|
| 582 |
+
raise RuntimeError("Warmup embeddings invalid shape")
|
| 583 |
+
dim = int(embs.shape[1])
|
| 584 |
+
LOG.info(f"[{job_id}] warmup embeddings shape = {embs.shape} dtype={embs.dtype}")
|
| 585 |
+
_append_log(job_id, f"warmup embeddings shape = {embs.shape} dim={dim}")
|
| 586 |
+
except Exception as e:
|
| 587 |
+
LOG.exception("[%s] Warmup embeddings failed: %s", job_id, e)
|
| 588 |
+
_append_log(job_id, f"Warmup embeddings failed: {e}")
|
| 589 |
+
_set_status(job_id, "error")
|
| 590 |
+
return
|
| 591 |
+
|
| 592 |
+
# If using QdrantStore: check existing collection vector size and warn if mismatch
|
| 593 |
+
if isinstance(STORE, QdrantStore):
|
| 594 |
+
try:
|
| 595 |
+
# client.get_collection throws if not exists
|
| 596 |
+
info = STORE.client.get_collection(collection_name=col)
|
| 597 |
+
existing_size = None
|
| 598 |
+
# depending on qdrant client version, structure might be different:
|
| 599 |
+
if hasattr(info, "result") and isinstance(info.result, dict):
|
| 600 |
+
cfg = info.result.get("params") or {}
|
| 601 |
+
vectors = cfg.get("vectors") or {}
|
| 602 |
+
existing_size = int(vectors.get("size")) if vectors.get("size") else None
|
| 603 |
+
elif isinstance(info, dict):
|
| 604 |
+
cfg = info.get("result", info)
|
| 605 |
+
vectors = cfg.get("params", {}).get("vectors", {})
|
| 606 |
+
existing_size = int(vectors.get("size")) if vectors else None
|
| 607 |
+
|
| 608 |
+
if existing_size and existing_size != dim:
|
| 609 |
+
msg = (f"Qdrant collection {col} already exists with dim={existing_size} but embeddings dim={dim}. "
|
| 610 |
+
"This will likely cause vectors to be rejected. Consider wiping or recreating collection.")
|
| 611 |
+
LOG.error("[%s] %s", job_id, msg)
|
| 612 |
+
_append_log(job_id, msg)
|
| 613 |
+
# Optional: if WIPE_BEFORE_INDEX True, recreate:
|
| 614 |
+
if WIPE_BEFORE_INDEX:
|
| 615 |
+
try:
|
| 616 |
+
STORE.wipe(col)
|
| 617 |
+
STORE.ensure_collection(col, dim)
|
| 618 |
+
_append_log(job_id, f"Recreated collection {col} with dim={dim} (WIPE_BEFORE_INDEX).")
|
| 619 |
+
except Exception as e:
|
| 620 |
+
_append_log(job_id, f"Failed recreate collection: {e}")
|
| 621 |
+
except Exception as e:
|
| 622 |
+
# collection not present or unable to introspect -> ok, ensure_collection will create
|
| 623 |
+
LOG.debug("[%s] Could not introspect collection: %s", job_id, e)
|
| 624 |
+
|
| 625 |
+
STORE.ensure_collection(col, dim)
|
| 626 |
+
_append_log(job_id, f"Collection ready: {col} (dim={dim})")
|
| 627 |
+
|
| 628 |
+
total_chunks = 0
|
| 629 |
+
buf_chunks: List[str] = []
|
| 630 |
+
buf_metas: List[Dict[str, Any]] = []
|
| 631 |
+
|
| 632 |
+
def _flush():
|
| 633 |
+
nonlocal buf_chunks, buf_metas, total_chunks
|
| 634 |
+
if not buf_chunks:
|
| 635 |
+
return
|
| 636 |
+
|
| 637 |
+
# ✅ DÉDUP INTRA-BATCH (même texte → même ID)
|
| 638 |
+
if QDRANT_DETERMINISTIC_IDS:
|
| 639 |
+
before = len(buf_metas)
|
| 640 |
+
seen = set()
|
| 641 |
+
dedup_chunks, dedup_metas = [], []
|
| 642 |
+
for txt, meta in zip(buf_chunks, buf_metas):
|
| 643 |
+
pid = _stable_point_id_uuid(col, meta) if QDRANT_ID_MODE == "uuid" else uuid.UUID(_stable_point_id_uuid(col, meta)).int >> 64
|
| 644 |
+
if pid in seen:
|
| 645 |
+
continue
|
| 646 |
+
seen.add(pid)
|
| 647 |
+
dedup_chunks.append(txt); dedup_metas.append(meta)
|
| 648 |
+
buf_chunks, buf_metas = dedup_chunks, dedup_metas
|
| 649 |
+
skipped = before - len(buf_metas)
|
| 650 |
+
if skipped > 0:
|
| 651 |
+
_append_log(job_id, f"Dedup intra-batch: skipped {skipped} duplicates")
|
| 652 |
+
|
| 653 |
+
try:
|
| 654 |
+
vecs, sz = _post_embeddings(buf_chunks, job_id=job_id)
|
| 655 |
+
except Exception as e:
|
| 656 |
+
# échec -> journaliser et faire échouer le job proprement (on ne vide pas le buffer pour debug mais on arrête)
|
| 657 |
+
LOG.exception("[%s] Embeddings failed during flush: %s", job_id, e)
|
| 658 |
+
_append_log(job_id, f"Embeddings failed during flush: {e}")
|
| 659 |
+
_set_status(job_id, "error")
|
| 660 |
+
raise
|
| 661 |
+
|
| 662 |
+
added = STORE.upsert(col, vecs, buf_metas)
|
| 663 |
+
total_chunks += added
|
| 664 |
+
_append_log(job_id, f"+{added} chunks (total={total_chunks}) ~{(sz/1024.0):.1f}KiB")
|
| 665 |
+
# vider buffers ONLY après succès
|
| 666 |
+
buf_chunks, buf_metas = [], []
|
| 667 |
+
|
| 668 |
+
# ✅ Filtre des fichiers pertinents
|
| 669 |
+
TEXT_EXTS = {".py", ".md", ".txt", ".yaml", ".yml", ".json", ".sh", ".dockerfile", ".ini", ".cfg", ".toml", ".env"}
|
| 670 |
+
IGNORE_PREFIXES = {".git", "__pycache__", ".vscode", ".idea", "node_modules", "build", "dist", "venv", ".env", ".log", ".tmp"}
|
| 671 |
+
|
| 672 |
+
for fi, f in enumerate(req.files, 1):
|
| 673 |
+
# defensive: path/text peuvent être None -> utiliser fallback
|
| 674 |
+
path_raw = (getattr(f, "path", "") or "") # peut être None
|
| 675 |
+
path = (path_raw or "").strip()
|
| 676 |
+
text_raw = (getattr(f, "text", "") or "")
|
| 677 |
+
text = text_raw or ""
|
| 678 |
+
|
| 679 |
+
if not path:
|
| 680 |
+
# fallback path stable basé sur hash du texte (pour éviter collisions None)
|
| 681 |
+
h8 = hashlib.blake2b((text or "").encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 682 |
+
path = f"__no_path__{h8}"
|
| 683 |
+
|
| 684 |
+
if any(path.startswith(p) for p in IGNORE_PREFIXES):
|
| 685 |
+
_append_log(job_id, f"📁 Ignored: {path} (dossier ignoré)")
|
| 686 |
+
continue
|
| 687 |
+
|
| 688 |
+
ext = os.path.splitext(path)[1].lower()
|
| 689 |
+
if ext not in TEXT_EXTS:
|
| 690 |
+
_append_log(job_id, f"📁 Ignored: {path} (extension non supportée: {ext})")
|
| 691 |
+
continue
|
| 692 |
+
|
| 693 |
+
if len((text or "").strip()) < 50: # ✅ Ignorer les fichiers trop courts
|
| 694 |
+
_append_log(job_id, f"📄 Ignored: {path} (texte trop court: {len((text or '').strip())} chars)")
|
| 695 |
+
continue
|
| 696 |
+
|
| 697 |
+
_append_log(job_id, f"📄 Processing: {path} ({len(text)} chars)")
|
| 698 |
+
|
| 699 |
+
# --- traitement spécial JSON / NDJSON ---
|
| 700 |
+
if ext in {".json"} or path.lower().endswith(".ndjson"):
|
| 701 |
+
handled = False
|
| 702 |
+
try:
|
| 703 |
+
parsed = json.loads(text)
|
| 704 |
+
# si c'est une liste -> indexer chaque entrée séparément
|
| 705 |
+
if isinstance(parsed, list):
|
| 706 |
+
for idx, obj in enumerate(parsed):
|
| 707 |
+
if isinstance(obj, dict):
|
| 708 |
+
s = " ".join(str(v) for v in obj.values() if isinstance(v, (str, int, float)))
|
| 709 |
+
else:
|
| 710 |
+
s = str(obj)
|
| 711 |
+
s = _clean_chunk_text(s)
|
| 712 |
+
if len(s) < 30:
|
| 713 |
+
continue
|
| 714 |
+
# dedup global intra-job
|
| 715 |
+
chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 716 |
+
if chash in seen_chunk_hashes:
|
| 717 |
+
continue
|
| 718 |
+
seen_chunk_hashes.add(chash)
|
| 719 |
+
|
| 720 |
+
meta = {"path": path, "chunk": idx, "start": 0, "end": len(s)}
|
| 721 |
+
if req.store_text:
|
| 722 |
+
meta["text"] = s
|
| 723 |
+
buf_chunks.append(s); buf_metas.append(meta)
|
| 724 |
+
if len(buf_chunks) >= req.batch_size:
|
| 725 |
+
_flush()
|
| 726 |
+
handled = True
|
| 727 |
+
elif isinstance(parsed, dict):
|
| 728 |
+
s = " ".join(str(v) for v in parsed.values() if isinstance(v, (str, int, float)))
|
| 729 |
+
s = _clean_chunk_text(s)
|
| 730 |
+
if len(s) >= 30:
|
| 731 |
+
chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 732 |
+
if chash not in seen_chunk_hashes:
|
| 733 |
+
seen_chunk_hashes.add(chash)
|
| 734 |
+
meta = {"path": path, "chunk": 0, "start": 0, "end": len(s)}
|
| 735 |
+
if req.store_text:
|
| 736 |
+
meta["text"] = s
|
| 737 |
+
buf_chunks.append(s); buf_metas.append(meta)
|
| 738 |
+
if len(buf_chunks) >= req.batch_size:
|
| 739 |
+
_flush()
|
| 740 |
+
handled = True
|
| 741 |
+
except Exception:
|
| 742 |
+
# fallback NDJSON: une ligne == un JSON ou texte
|
| 743 |
+
try:
|
| 744 |
+
lines = [L for L in (text or "").splitlines() if L.strip()]
|
| 745 |
+
for li, line in enumerate(lines):
|
| 746 |
+
try:
|
| 747 |
+
obj = json.loads(line)
|
| 748 |
+
if isinstance(obj, dict):
|
| 749 |
+
s = " ".join(str(v) for v in obj.values() if isinstance(v, (str, int, float)))
|
| 750 |
+
else:
|
| 751 |
+
s = str(obj)
|
| 752 |
+
s = _clean_chunk_text(s)
|
| 753 |
+
if len(s) < 30:
|
| 754 |
+
continue
|
| 755 |
+
chash = hashlib.blake2b(s.encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 756 |
+
if chash in seen_chunk_hashes:
|
| 757 |
+
continue
|
| 758 |
+
seen_chunk_hashes.add(chash)
|
| 759 |
+
meta = {"path": path, "chunk": li, "start": 0, "end": len(s)}
|
| 760 |
+
if req.store_text:
|
| 761 |
+
meta["text"] = s
|
| 762 |
+
buf_chunks.append(s); buf_metas.append(meta)
|
| 763 |
+
if len(buf_chunks) >= req.batch_size:
|
| 764 |
+
_flush()
|
| 765 |
+
except Exception:
|
| 766 |
+
# ligne non JSON -> indexer comme texte si longue
|
| 767 |
+
sl = (line or "").strip()
|
| 768 |
+
if len(sl) >= 30:
|
| 769 |
+
sl = _clean_chunk_text(sl)
|
| 770 |
+
chash = hashlib.blake2b(sl.encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 771 |
+
if chash in seen_chunk_hashes:
|
| 772 |
+
continue
|
| 773 |
+
seen_chunk_hashes.add(chash)
|
| 774 |
+
meta = {"path": path, "chunk": li, "start": 0, "end": len(sl)}
|
| 775 |
+
if req.store_text:
|
| 776 |
+
meta["text"] = sl
|
| 777 |
+
buf_chunks.append(sl); buf_metas.append(meta)
|
| 778 |
+
if len(buf_chunks) >= req.batch_size:
|
| 779 |
+
_flush()
|
| 780 |
+
handled = True
|
| 781 |
+
except Exception:
|
| 782 |
+
handled = False
|
| 783 |
+
|
| 784 |
+
if handled:
|
| 785 |
+
_flush()
|
| 786 |
+
_append_log(job_id, f"File done: {path}")
|
| 787 |
+
continue # passe au fichier suivant
|
| 788 |
+
|
| 789 |
+
# --- traitement normal pour fichiers texte ---
|
| 790 |
+
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(text or "", req.chunk_size, req.overlap)):
|
| 791 |
+
chunk_txt = (chunk_txt or "").strip()
|
| 792 |
+
if len(chunk_txt) < 30: # ✅ Ignorer les chunks trop courts
|
| 793 |
continue
|
| 794 |
+
# nettoyage pour éviter artefacts JSON / timestamps
|
| 795 |
+
chunk_txt = _clean_chunk_text(chunk_txt)
|
| 796 |
+
if len(chunk_txt) < 30:
|
| 797 |
+
continue
|
| 798 |
+
|
| 799 |
+
# dedup global intra-job (empêche répétitions)
|
| 800 |
+
chash = hashlib.blake2b(chunk_txt.encode("utf-8", "ignore"), digest_size=8).hexdigest()
|
| 801 |
+
if chash in seen_chunk_hashes:
|
| 802 |
+
continue
|
| 803 |
+
seen_chunk_hashes.add(chash)
|
| 804 |
+
|
| 805 |
+
buf_chunks.append(chunk_txt)
|
| 806 |
+
meta = {
|
| 807 |
+
"path": path,
|
| 808 |
+
"chunk": ci,
|
| 809 |
+
"start": start,
|
| 810 |
+
"end": end,
|
| 811 |
+
}
|
| 812 |
+
if req.store_text:
|
| 813 |
+
meta["text"] = chunk_txt
|
| 814 |
+
buf_metas.append(meta)
|
| 815 |
+
|
| 816 |
+
if len(buf_chunks) >= req.batch_size:
|
| 817 |
+
_flush()
|
| 818 |
+
|
| 819 |
+
# flush fin de fichier
|
| 820 |
+
_flush()
|
| 821 |
+
_append_log(job_id, f"File done: {path}")
|
| 822 |
+
|
| 823 |
+
_append_log(job_id, f"Done. chunks={total_chunks}")
|
| 824 |
+
_set_status(job_id, "done")
|
| 825 |
+
LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
|
| 826 |
+
|
| 827 |
+
except Exception as e:
|
| 828 |
+
LOG.exception("Index job failed")
|
| 829 |
+
_append_log(job_id, f"ERROR: {e}")
|
| 830 |
+
_set_status(job_id, "error")
|
| 831 |
+
|
| 832 |
+
# ======================================================================================
|
| 833 |
+
# API
|
| 834 |
+
# ======================================================================================
|
| 835 |
+
|
| 836 |
+
app = FastAPI()
|
| 837 |
+
|
| 838 |
+
@app.get("/")
|
| 839 |
+
def root():
|
| 840 |
+
return {
|
| 841 |
+
"ok": True,
|
| 842 |
+
"service": "remote-indexer",
|
| 843 |
+
"backends": EMB_BACKEND_ORDER,
|
| 844 |
+
"hf_url_pipeline": HF_URL_PIPE if "hf" in EMB_BACKEND_ORDER else None,
|
| 845 |
+
"hf_url_models": HF_URL_MODL if "hf" in EMB_BACKEND_ORDER else None,
|
| 846 |
+
"di_url": DI_URL if "deepinfra" in EMB_BACKEND_ORDER else None,
|
| 847 |
+
"di_model": DI_MODEL if "deepinfra" in EMB_BACKEND_ORDER else None,
|
| 848 |
+
"vector_store": VECTOR_STORE,
|
| 849 |
+
"vector_store_active": "QdrantStore" if isinstance(STORE, QdrantStore) else "MemoryStore",
|
| 850 |
+
"qdrant_deterministic_ids": QDRANT_DETERMINISTIC_IDS,
|
| 851 |
+
"qdrant_id_mode": QDRANT_ID_MODE,
|
| 852 |
+
"wipe_before_index": WIPE_BEFORE_INDEX,
|
| 853 |
+
"docs": "/health, /index, /status/{job_id} | /status?job_id= | POST /status, /query, /wipe",
|
| 854 |
+
}
|
| 855 |
+
|
| 856 |
+
@app.get("/health")
|
| 857 |
+
def health():
|
| 858 |
+
return {"ok": True, "store": "QdrantStore" if isinstance(STORE, QdrantStore) else "MemoryStore"}
|
| 859 |
+
|
| 860 |
+
def _check_backend_ready():
|
| 861 |
+
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
|
| 862 |
+
raise HTTPException(400, "HF_API_TOKEN manquant côté serveur (backend=hf).")
|
| 863 |
+
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN and EMB_BACKEND_ORDER == ["deepinfra"]:
|
| 864 |
+
raise HTTPException(400, "DEEPINFRA_API_KEY manquant côté serveur (backend=deepinfra).")
|
| 865 |
+
|
| 866 |
+
@app.post("/index")
|
| 867 |
+
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
|
| 868 |
+
_auth(x_auth_token)
|
| 869 |
+
_check_backend_ready()
|
| 870 |
+
job_id = uuid.uuid4().hex[:12]
|
| 871 |
+
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
|
| 872 |
+
LOG.info(f"Created job {job_id} for project {req.project_id}")
|
| 873 |
+
_append_log(job_id, f"Job created: {job_id} project={req.project_id}")
|
| 874 |
+
background_tasks.add_task(run_index_job, job_id, req)
|
| 875 |
+
return {"job_id": job_id}
|
| 876 |
+
|
| 877 |
+
# --- 3 variantes pour /status ---
|
| 878 |
+
@app.get("/status/{job_id}")
|
| 879 |
+
def status_path(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 880 |
+
_auth(x_auth_token)
|
| 881 |
+
j = JOBS.get(job_id)
|
| 882 |
+
if not j:
|
| 883 |
+
# Response JSON plus explicite pour faciliter le debug côté client
|
| 884 |
+
raise HTTPException(status_code=404, detail={"error": "job inconnu", "advice": "POST /index to create a new job"})
|
| 885 |
+
return {"status": j["status"], "logs": j["logs"][-1500:]}
|
| 886 |
+
|
| 887 |
+
@app.get("/status")
|
| 888 |
+
def status_query(job_id: str = Query(...), x_auth_token: Optional[str] = Header(default=None)):
|
| 889 |
+
return status_path(job_id, x_auth_token)
|
| 890 |
+
|
| 891 |
+
@app.post("/status")
|
| 892 |
+
def status_post(body: StatusBody, x_auth_token: Optional[str] = Header(default=None)):
|
| 893 |
+
return status_path(body.job_id, x_auth_token)
|
| 894 |
+
|
| 895 |
+
@app.post("/query")
|
| 896 |
+
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
|
| 897 |
+
_auth(x_auth_token)
|
| 898 |
+
_check_backend_ready()
|
| 899 |
+
vecs, _ = _post_embeddings([req.query])
|
| 900 |
+
col = f"proj_{req.project_id}"
|
| 901 |
try:
|
| 902 |
+
results = STORE.search(col, vecs[0], int(req.top_k))
|
|
|
|
| 903 |
except Exception as e:
|
| 904 |
+
raise HTTPException(400, f"Search failed: {e}")
|
| 905 |
+
out = []
|
| 906 |
+
for pl in results:
|
| 907 |
+
txt = pl.get("text")
|
| 908 |
+
if txt and len(txt) > 800:
|
| 909 |
+
txt = txt[:800] + "..."
|
| 910 |
+
out.append({
|
| 911 |
+
"path": pl.get("path"),
|
| 912 |
+
"chunk": pl.get("chunk"),
|
| 913 |
+
"start": pl.get("start"),
|
| 914 |
+
"end": pl.get("end"),
|
| 915 |
+
"text": txt,
|
| 916 |
+
"score": float(pl.get("_score")) if pl.get("_score") is not None else None
|
| 917 |
+
})
|
| 918 |
+
return {"results": out}
|
| 919 |
+
|
| 920 |
+
@app.post("/wipe")
|
| 921 |
+
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 922 |
+
_auth(x_auth_token)
|
| 923 |
+
col = f"proj_{project_id}"
|
| 924 |
try:
|
| 925 |
+
STORE.wipe(col); return {"ok": True}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 926 |
except Exception as e:
|
| 927 |
+
raise HTTPException(400, f"wipe failed: {e}")
|
| 928 |
+
|
| 929 |
+
# ======================================================================================
|
| 930 |
+
# Entrypoint
|
| 931 |
+
# ======================================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 932 |
|
| 933 |
if __name__ == "__main__":
|
| 934 |
+
import uvicorn
|
| 935 |
+
port = int(os.getenv("PORT", "7860"))
|
| 936 |
+
LOG.info(f"===== Application Startup on PORT {port} =====")
|
| 937 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|