Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,91 +1,87 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
from __future__ import annotations
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from typing import List, Optional, Dict, Any, Tuple
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import requests
|
| 8 |
-
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException
|
| 9 |
from pydantic import BaseModel, Field
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
from qdrant_client.http.models import VectorParams, Distance, PointStruct
|
| 15 |
-
except Exception: # si non installé, on retombe en mémoire
|
| 16 |
-
QdrantClient = None
|
| 17 |
-
VectorParams = Distance = PointStruct = None
|
| 18 |
-
|
| 19 |
-
# ---------- logging ----------
|
| 20 |
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
|
| 21 |
LOG = logging.getLogger("remote_indexer")
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# Ordre des backends d'embeddings à essayer. Par défaut: DeepInfra, puis HF.
|
| 28 |
-
DEFAULT_BACKENDS = "deepinfra,hf"
|
| 29 |
-
EMB_BACKEND_ORDER = [s.strip().lower()
|
| 30 |
-
for s in os.getenv("EMB_BACKEND_ORDER", os.getenv("EMB_BACKEND", DEFAULT_BACKENDS)).split(",")
|
| 31 |
-
if s.strip()]
|
| 32 |
-
|
| 33 |
-
ALLOW_DI_AUTOFALLBACK = os.getenv("ALLOW_DI_AUTOFALLBACK", "true").lower() in ("1","true","yes","on")
|
| 34 |
-
|
| 35 |
-
# HF Inference API
|
| 36 |
-
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
|
| 37 |
-
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2").strip()
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
if
|
| 44 |
-
|
| 45 |
-
else:
|
| 46 |
-
HF_API_URL_MODELS = HF_API_URL_USER
|
| 47 |
-
|
| 48 |
-
HF_URL_PIPELINE = (HF_API_URL_PIPELINE or f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}")
|
| 49 |
-
HF_URL_MODELS = (HF_API_URL_MODELS or f"https://api-inference.huggingface.co/models/{HF_MODEL}")
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# DeepInfra (OpenAI-compatible embeddings)
|
| 56 |
DI_TOKEN = os.getenv("DEEPINFRA_API_KEY", "").strip()
|
| 57 |
DI_MODEL = os.getenv("DEEPINFRA_EMBED_MODEL", "BAAI/bge-m3").strip()
|
| 58 |
DI_URL = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/openai/embeddings").strip()
|
| 59 |
DI_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
# Auth d’API
|
|
|
|
| 71 |
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()
|
| 72 |
|
| 73 |
LOG.info(f"Embeddings backend order = {EMB_BACKEND_ORDER}")
|
| 74 |
-
LOG.info(f"HF pipeline URL = {
|
| 75 |
-
LOG.info(f"HF models URL = {
|
| 76 |
LOG.info(f"VECTOR_STORE = {VECTOR_STORE}")
|
| 77 |
-
|
| 78 |
-
LOG.warning("HF_API_TOKEN manquant — tentatives HF échoueront.")
|
| 79 |
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN:
|
| 80 |
LOG.warning("DEEPINFRA_API_KEY manquant — tentatives DeepInfra échoueront.")
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
#
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
import logging
|
| 87 |
-
|
| 88 |
-
LOG = logging.getLogger("remote_indexer")
|
| 89 |
|
| 90 |
try:
|
| 91 |
from qdrant_client import QdrantClient
|
|
@@ -94,19 +90,16 @@ except Exception:
|
|
| 94 |
QdrantClient = None
|
| 95 |
PointStruct = None
|
| 96 |
|
| 97 |
-
|
| 98 |
class BaseStore:
|
| 99 |
def ensure_collection(self, name: str, dim: int): ...
|
| 100 |
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int: ...
|
| 101 |
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]: ...
|
| 102 |
def wipe(self, name: str): ...
|
| 103 |
|
| 104 |
-
|
| 105 |
class MemoryStore(BaseStore):
|
| 106 |
-
"""Store en mémoire (volatile)."""
|
| 107 |
def __init__(self):
|
| 108 |
-
|
| 109 |
-
self.db: Dict[str, Dict[str, List[Any]]] = {}
|
| 110 |
|
| 111 |
def ensure_collection(self, name: str, dim: int):
|
| 112 |
self.db.setdefault(name, {"vecs": [], "payloads": [], "dim": dim})
|
|
@@ -116,18 +109,17 @@ class MemoryStore(BaseStore):
|
|
| 116 |
raise RuntimeError(f"MemoryStore: collection {name} inconnue")
|
| 117 |
if len(vectors) != len(payloads):
|
| 118 |
raise ValueError("MemoryStore.upsert: tailles vectors/payloads incohérentes")
|
| 119 |
-
self.db[name]["vecs"].extend([
|
| 120 |
self.db[name]["payloads"].extend(payloads)
|
| 121 |
return len(vectors)
|
| 122 |
|
| 123 |
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
|
| 124 |
if name not in self.db or not self.db[name]["vecs"]:
|
| 125 |
return []
|
| 126 |
-
mat = np.vstack(self.db[name]["vecs"]) # [N, dim]
|
| 127 |
-
q = query_vec.reshape(1, -1).astype(np.float32)
|
| 128 |
-
# cosine similarity
|
| 129 |
-
|
| 130 |
-
sims = (mat @ q.T).ravel() # [N]
|
| 131 |
top_idx = np.argsort(-sims)[:top_k]
|
| 132 |
out = []
|
| 133 |
for i in top_idx:
|
|
@@ -139,27 +131,22 @@ class MemoryStore(BaseStore):
|
|
| 139 |
def wipe(self, name: str):
|
| 140 |
self.db.pop(name, None)
|
| 141 |
|
| 142 |
-
|
| 143 |
class QdrantStore(BaseStore):
|
| 144 |
-
"""Store Qdrant avec gestion d'IDs séquentiels par
|
| 145 |
def __init__(self, url: str, api_key: Optional[str] = None):
|
| 146 |
if QdrantClient is None or PointStruct is None:
|
| 147 |
raise RuntimeError("qdrant_client non disponible")
|
| 148 |
self.client = QdrantClient(url=url, api_key=api_key if api_key else None)
|
| 149 |
-
# compteur d'IDs par collection
|
| 150 |
self._next_ids: Dict[str, int] = {}
|
| 151 |
|
| 152 |
def _init_next_id(self, name: str):
|
| 153 |
-
# on cherche le count exact des points existants pour démarrer l'ID à count
|
| 154 |
try:
|
| 155 |
cnt = self.client.count(collection_name=name, exact=True).count
|
| 156 |
except Exception:
|
| 157 |
-
# si count échoue (collection vide juste créée), on démarre à 0
|
| 158 |
cnt = 0
|
| 159 |
self._next_ids[name] = int(cnt)
|
| 160 |
|
| 161 |
def ensure_collection(self, name: str, dim: int):
|
| 162 |
-
# si existe déjà, rien à faire ; sinon, création
|
| 163 |
try:
|
| 164 |
self.client.get_collection(name)
|
| 165 |
except Exception:
|
|
@@ -167,7 +154,6 @@ class QdrantStore(BaseStore):
|
|
| 167 |
collection_name=name,
|
| 168 |
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
|
| 169 |
)
|
| 170 |
-
# initialiser le prochain id si absent
|
| 171 |
if name not in self._next_ids:
|
| 172 |
self._init_next_id(name)
|
| 173 |
|
|
@@ -176,14 +162,14 @@ class QdrantStore(BaseStore):
|
|
| 176 |
return 0
|
| 177 |
if len(vectors) != len(payloads):
|
| 178 |
raise ValueError("QdrantStore.upsert: tailles vectors/payloads incohérentes")
|
| 179 |
-
|
| 180 |
if name not in self._next_ids:
|
| 181 |
self._init_next_id(name)
|
| 182 |
|
| 183 |
start = self._next_ids[name]
|
| 184 |
-
# construction des points avec IDs séquentiels (int)
|
| 185 |
pts = [
|
| 186 |
-
PointStruct(id=start + i,
|
|
|
|
|
|
|
| 187 |
for i, v in enumerate(vectors)
|
| 188 |
]
|
| 189 |
self.client.upsert(collection_name=name, points=pts)
|
|
@@ -201,7 +187,10 @@ class QdrantStore(BaseStore):
|
|
| 201 |
out = []
|
| 202 |
for p in res:
|
| 203 |
pl = p.payload or {}
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
| 205 |
out.append(pl)
|
| 206 |
return out
|
| 207 |
|
|
@@ -212,47 +201,25 @@ class QdrantStore(BaseStore):
|
|
| 212 |
pass
|
| 213 |
self._next_ids.pop(name, None)
|
| 214 |
|
| 215 |
-
|
| 216 |
-
# ---------- Initialisation du store actif ----------
|
| 217 |
-
import os
|
| 218 |
-
|
| 219 |
-
VECTOR_STORE = os.getenv("VECTOR_STORE", "qdrant").strip().lower()
|
| 220 |
-
QDRANT_URL = os.getenv("QDRANT_URL", "").strip()
|
| 221 |
-
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
|
| 222 |
-
|
| 223 |
try:
|
| 224 |
if VECTOR_STORE == "qdrant" and QDRANT_URL:
|
| 225 |
-
STORE: BaseStore = QdrantStore(QDRANT_URL, api_key=QDRANT_API)
|
| 226 |
-
|
| 227 |
-
_ = STORE.client.get_collections()
|
| 228 |
LOG.info("Connecté à Qdrant.")
|
| 229 |
VECTOR_STORE_ACTIVE = "QdrantStore"
|
| 230 |
else:
|
| 231 |
raise RuntimeError("Qdrant non configuré, fallback mémoire.")
|
| 232 |
except Exception as e:
|
| 233 |
-
LOG.error(f"Qdrant indisponible ({e}) — fallback en mémoire.")
|
| 234 |
STORE = MemoryStore()
|
| 235 |
VECTOR_STORE_ACTIVE = "MemoryStore"
|
| 236 |
LOG.warning("Vector store: MEMORY (fallback). Les données sont volatiles (perdues au restart).")
|
| 237 |
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
-
# Sélection / auto-fallback du store
|
| 240 |
-
STORE: VectorStoreBase
|
| 241 |
-
def _init_store() -> VectorStoreBase:
|
| 242 |
-
prefer = VECTOR_STORE
|
| 243 |
-
if prefer == "memory":
|
| 244 |
-
return MemoryStore()
|
| 245 |
-
|
| 246 |
-
# prefer qdrant
|
| 247 |
-
try:
|
| 248 |
-
return QdrantStore(QDRANT_URL, QDRANT_API if QDRANT_API else None)
|
| 249 |
-
except Exception as e:
|
| 250 |
-
LOG.error(f"Qdrant indisponible ({e}) — fallback en mémoire.")
|
| 251 |
-
return MemoryStore()
|
| 252 |
-
|
| 253 |
-
STORE = _init_store()
|
| 254 |
-
|
| 255 |
-
# ---------- Pydantic ----------
|
| 256 |
class FileIn(BaseModel):
|
| 257 |
path: str
|
| 258 |
text: str
|
|
@@ -270,103 +237,47 @@ class QueryRequest(BaseModel):
|
|
| 270 |
query: str
|
| 271 |
top_k: int = 6
|
| 272 |
|
| 273 |
-
#
|
| 274 |
-
|
|
|
|
|
|
|
| 275 |
|
| 276 |
def _append_log(job_id: str, line: str):
|
| 277 |
job = JOBS.get(job_id)
|
| 278 |
-
if job:
|
|
|
|
| 279 |
|
| 280 |
def _set_status(job_id: str, status: str):
|
| 281 |
job = JOBS.get(job_id)
|
| 282 |
-
if job:
|
|
|
|
| 283 |
|
| 284 |
def _auth(x_auth: Optional[str]):
|
| 285 |
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
|
| 286 |
-
raise HTTPException(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
back = (RETRY_BASE_SEC ** attempt)
|
| 291 |
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
|
| 292 |
return max(0.25, back * jitter)
|
| 293 |
|
| 294 |
-
def
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
# ---------- HF embeddings ----------
|
| 298 |
-
def _hf_http(url: str, payload: Dict[str, Any], headers_extra: Optional[Dict[str, str]] = None) -> Tuple[np.ndarray, int]:
|
| 299 |
-
if not HF_TOKEN:
|
| 300 |
-
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
|
| 301 |
-
headers = {
|
| 302 |
-
"Authorization": f"Bearer {HF_TOKEN}",
|
| 303 |
-
"Content-Type": "application/json",
|
| 304 |
-
"Accept": "application/json",
|
| 305 |
-
}
|
| 306 |
-
if HF_WAIT:
|
| 307 |
-
payload.setdefault("options", {})["wait_for_model"] = True
|
| 308 |
-
headers["X-Wait-For-Model"] = "true"
|
| 309 |
-
headers["X-Use-Cache"] = "true"
|
| 310 |
-
if headers_extra:
|
| 311 |
-
headers.update(headers_extra)
|
| 312 |
-
|
| 313 |
-
r = requests.post(url, headers=headers, json=payload, timeout=HF_TIMEOUT)
|
| 314 |
-
size = int(r.headers.get("Content-Length", "0"))
|
| 315 |
-
if r.status_code >= 400:
|
| 316 |
-
LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
|
| 317 |
-
r.raise_for_status()
|
| 318 |
-
|
| 319 |
-
data = r.json()
|
| 320 |
-
arr = np.array(data, dtype=np.float32)
|
| 321 |
-
if arr.ndim == 3:
|
| 322 |
-
arr = arr.mean(axis=1)
|
| 323 |
-
elif arr.ndim == 1:
|
| 324 |
-
arr = arr.reshape(1, -1)
|
| 325 |
-
if arr.ndim != 2:
|
| 326 |
-
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
|
| 327 |
-
|
| 328 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 329 |
-
|
| 330 |
-
return arr.astype(np.float32), size
|
| 331 |
-
|
| 332 |
-
def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 333 |
-
payload: Dict[str, Any] = {"inputs": (batch if len(batch) > 1 else batch[0])}
|
| 334 |
-
urls = [HF_URL_PIPELINE, HF_URL_MODELS] if HF_PIPELINE_FIRST else [HF_URL_MODELS, HF_URL_PIPELINE]
|
| 335 |
-
last_exc: Optional[Exception] = None
|
| 336 |
-
for idx, url in enumerate(urls, 1):
|
| 337 |
-
try:
|
| 338 |
-
if "/models/" in url:
|
| 339 |
-
return _hf_http(url, payload, headers_extra={"X-Task": "feature-extraction"})
|
| 340 |
-
else:
|
| 341 |
-
return _hf_http(url, payload, headers_extra=None)
|
| 342 |
-
except requests.HTTPError as he:
|
| 343 |
-
code = he.response.status_code if he.response is not None else 0
|
| 344 |
-
body = he.response.text if he.response is not None else ""
|
| 345 |
-
last_exc = he
|
| 346 |
-
if code in (404, 405, 501) and idx < len(urls):
|
| 347 |
-
LOG.warning(f"HF endpoint {url} non dispo ({code}), fallback vers alternative ...")
|
| 348 |
-
continue
|
| 349 |
-
if "/models/" in url and "SentenceSimilarityPipeline" in (body or ""):
|
| 350 |
-
try:
|
| 351 |
-
forced_url = _with_task_param(url, "feature-extraction")
|
| 352 |
-
LOG.warning("HF MODELS a choisi Similarity -> retry avec %s + X-Task", forced_url)
|
| 353 |
-
return _hf_http(forced_url, payload, headers_extra={"X-Task": "feature-extraction"})
|
| 354 |
-
except Exception as he2:
|
| 355 |
-
last_exc = he2
|
| 356 |
-
raise
|
| 357 |
-
except Exception as e:
|
| 358 |
-
last_exc = e
|
| 359 |
-
raise
|
| 360 |
-
raise RuntimeError(f"HF: aucun endpoint utilisable ({last_exc})")
|
| 361 |
|
| 362 |
-
# ---------- DeepInfra embeddings ----------
|
| 363 |
def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 364 |
if not DI_TOKEN:
|
| 365 |
raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
|
| 366 |
-
headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"
|
| 367 |
payload = {"model": DI_MODEL, "input": batch}
|
| 368 |
r = requests.post(DI_URL, headers=headers, json=payload, timeout=DI_TIMEOUT)
|
| 369 |
-
size = int(r.headers.get("Content-Length", "0"))
|
| 370 |
if r.status_code >= 400:
|
| 371 |
LOG.error(f"DeepInfra error {r.status_code}: {r.text[:1000]}")
|
| 372 |
r.raise_for_status()
|
|
@@ -378,15 +289,92 @@ def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
|
| 378 |
arr = np.asarray(embs, dtype=np.float32)
|
| 379 |
if arr.ndim != 2:
|
| 380 |
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
|
| 381 |
-
|
| 382 |
-
arr = arr / norms
|
| 383 |
-
return arr.astype(np.float32), size
|
| 384 |
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
| 392 |
last_exc = None
|
|
@@ -414,35 +402,43 @@ def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str]
|
|
| 414 |
raise RuntimeError(f"{label}: retries exhausted: {last_exc}")
|
| 415 |
|
| 416 |
def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
last_err = None
|
| 418 |
-
similarity_misroute = False
|
| 419 |
for b in EMB_BACKEND_ORDER:
|
| 420 |
-
if b == "
|
| 421 |
-
try:
|
| 422 |
-
return _call_with_retries(_hf_post_embeddings_once, batch, "HF", job_id)
|
| 423 |
-
except requests.HTTPError as he:
|
| 424 |
-
body = he.response.text if getattr(he, "response", None) is not None else ""
|
| 425 |
-
if "SentenceSimilarityPipeline.__call__()" in (body or ""):
|
| 426 |
-
similarity_misroute = True
|
| 427 |
-
last_err = he
|
| 428 |
-
_append_log(job_id, f"HF failed: {he}.")
|
| 429 |
-
LOG.error(f"HF failed: {he}")
|
| 430 |
-
elif b == "deepinfra":
|
| 431 |
try:
|
| 432 |
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
| 433 |
except Exception as e:
|
| 434 |
last_err = e
|
| 435 |
_append_log(job_id, f"DeepInfra failed: {e}.")
|
| 436 |
LOG.error(f"DeepInfra failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
else:
|
| 438 |
_append_log(job_id, f"Backend inconnu ignoré: {b}")
|
| 439 |
-
if ALLOW_DI_AUTOFALLBACK and similarity_misroute and DI_TOKEN:
|
| 440 |
-
LOG.warning("HF a routé sur SentenceSimilarity => auto-fallback DeepInfra (override ordre).")
|
| 441 |
-
_append_log(job_id, "Auto-fallback DeepInfra (HF => SentenceSimilarity).")
|
| 442 |
-
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
| 443 |
raise RuntimeError(f"Tous les backends ont échoué: {last_err}")
|
| 444 |
|
| 445 |
-
#
|
|
|
|
|
|
|
|
|
|
| 446 |
def _chunk_with_spans(text: str, size: int, overlap: int):
|
| 447 |
n = len(text or "")
|
| 448 |
if size <= 0:
|
|
@@ -452,66 +448,71 @@ def _chunk_with_spans(text: str, size: int, overlap: int):
|
|
| 452 |
j = min(n, i + size)
|
| 453 |
yield (i, j, text[i:j])
|
| 454 |
i = max(0, j - overlap)
|
| 455 |
-
if i >= n:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
|
| 457 |
-
# ---------- Background task ----------
|
| 458 |
def run_index_job(job_id: str, req: IndexRequest):
|
| 459 |
try:
|
| 460 |
_set_status(job_id, "running")
|
| 461 |
-
total_chunks = 0
|
| 462 |
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER} | store={VECTOR_STORE}")
|
| 463 |
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
|
| 464 |
|
| 465 |
# Warmup -> dimension
|
| 466 |
-
warm = "warmup"
|
| 467 |
-
if req.files:
|
| 468 |
-
for _, _, chunk_txt in _chunk_with_spans(req.files[0].text or "", req.chunk_size, req.overlap):
|
| 469 |
-
if (chunk_txt or "").strip():
|
| 470 |
-
warm = chunk_txt; break
|
| 471 |
embs, _ = _post_embeddings([warm], job_id=job_id)
|
| 472 |
dim = embs.shape[1]
|
| 473 |
col = f"proj_{req.project_id}"
|
|
|
|
|
|
|
| 474 |
STORE.ensure_collection(col, dim)
|
| 475 |
_append_log(job_id, f"Collection ready: {col} (dim={dim})")
|
| 476 |
|
| 477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
for fi, f in enumerate(req.files, 1):
|
| 479 |
-
if not (f.text or "").strip():
|
| 480 |
-
_append_log(job_id, f"file {fi}: vide — ignoré")
|
| 481 |
-
continue
|
| 482 |
-
|
| 483 |
-
batch_txts, metas = [], []
|
| 484 |
-
def _flush():
|
| 485 |
-
nonlocal batch_txts, metas, total_chunks
|
| 486 |
-
if not batch_txts: return
|
| 487 |
-
vecs, sz = _post_embeddings(batch_txts, job_id=job_id)
|
| 488 |
-
added = STORE.upsert(col, vecs, metas)
|
| 489 |
-
total_chunks += added
|
| 490 |
-
_append_log(job_id, f"file {fi}/{len(req.files)}: +{added} chunks (total={total_chunks})")
|
| 491 |
-
batch_txts, metas = [], []
|
| 492 |
-
|
| 493 |
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
|
| 494 |
-
|
| 495 |
-
continue
|
| 496 |
-
batch_txts.append(chunk_txt)
|
| 497 |
meta = {"path": f.path, "chunk": ci, "start": start, "end": end}
|
| 498 |
if req.store_text:
|
| 499 |
meta["text"] = chunk_txt
|
| 500 |
-
|
| 501 |
-
if len(
|
| 502 |
_flush()
|
| 503 |
-
|
|
|
|
| 504 |
_flush()
|
|
|
|
| 505 |
|
| 506 |
_append_log(job_id, f"Done. chunks={total_chunks}")
|
| 507 |
_set_status(job_id, "done")
|
| 508 |
LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
|
|
|
|
| 509 |
except Exception as e:
|
| 510 |
LOG.exception("Index job failed")
|
| 511 |
_append_log(job_id, f"ERROR: {e}")
|
| 512 |
_set_status(job_id, "error")
|
| 513 |
|
| 514 |
-
#
|
|
|
|
|
|
|
|
|
|
| 515 |
app = FastAPI()
|
| 516 |
|
| 517 |
@app.get("/")
|
|
@@ -520,18 +521,18 @@ def root():
|
|
| 520 |
"ok": True,
|
| 521 |
"service": "remote-indexer",
|
| 522 |
"backends": EMB_BACKEND_ORDER,
|
| 523 |
-
"hf_url_pipeline":
|
| 524 |
-
"hf_url_models":
|
| 525 |
"di_url": DI_URL if "deepinfra" in EMB_BACKEND_ORDER else None,
|
| 526 |
"di_model": DI_MODEL if "deepinfra" in EMB_BACKEND_ORDER else None,
|
| 527 |
"vector_store": VECTOR_STORE,
|
| 528 |
-
"vector_store_active":
|
| 529 |
-
"docs": "/health, /index, /status/{job_id}, /query, /wipe"
|
| 530 |
}
|
| 531 |
|
| 532 |
@app.get("/health")
|
| 533 |
def health():
|
| 534 |
-
return {"ok": True}
|
| 535 |
|
| 536 |
def _check_backend_ready():
|
| 537 |
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
|
|
@@ -541,14 +542,8 @@ def _check_backend_ready():
|
|
| 541 |
|
| 542 |
@app.post("/index")
|
| 543 |
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
|
| 544 |
-
|
| 545 |
-
raise HTTPException(401, "Unauthorized")
|
| 546 |
_check_backend_ready()
|
| 547 |
-
non_empty = [f for f in req.files if (f.text or "").strip()]
|
| 548 |
-
if not non_empty:
|
| 549 |
-
raise HTTPException(422, "Aucun fichier non vide à indexer.")
|
| 550 |
-
req.files = non_empty
|
| 551 |
-
|
| 552 |
job_id = uuid.uuid4().hex[:12]
|
| 553 |
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
|
| 554 |
background_tasks.add_task(run_index_job, job_id, req)
|
|
@@ -556,58 +551,25 @@ def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_tok
|
|
| 556 |
|
| 557 |
@app.get("/status/{job_id}")
|
| 558 |
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 559 |
-
|
| 560 |
-
raise HTTPException(401, "Unauthorized")
|
| 561 |
-
j = JOBS.get(job_id)
|
| 562 |
-
if not j:
|
| 563 |
-
raise HTTPException(404, "job inconnu")
|
| 564 |
-
return {"status": j["status"], "logs": j["logs"][-800:]}
|
| 565 |
-
|
| 566 |
-
# Legacy compat
|
| 567 |
-
@app.get("/status")
|
| 568 |
-
def status_qp(job_id: str = Query(None), x_auth_token: Optional[str] = Header(default=None)):
|
| 569 |
-
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 570 |
-
raise HTTPException(401, "Unauthorized")
|
| 571 |
-
if not job_id:
|
| 572 |
-
raise HTTPException(404, "job inconnu")
|
| 573 |
j = JOBS.get(job_id)
|
| 574 |
if not j:
|
| 575 |
raise HTTPException(404, "job inconnu")
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
class _StatusBody(BaseModel):
|
| 579 |
-
job_id: str
|
| 580 |
-
|
| 581 |
-
@app.post("/status")
|
| 582 |
-
def status_post(body: _StatusBody, x_auth_token: Optional[str] = Header(default=None)):
|
| 583 |
-
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 584 |
-
raise HTTPException(401, "Unauthorized")
|
| 585 |
-
j = JOBS.get(body.job_id)
|
| 586 |
-
if not j:
|
| 587 |
-
raise HTTPException(404, "job inconnu")
|
| 588 |
-
return {"status": j["status"], "logs": j["logs"][-800:]}
|
| 589 |
|
| 590 |
@app.post("/query")
|
| 591 |
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
|
| 592 |
-
|
| 593 |
-
raise HTTPException(401, "Unauthorized")
|
| 594 |
_check_backend_ready()
|
| 595 |
-
k = int(max(1, min(50, req.top_k or 6)))
|
| 596 |
-
|
| 597 |
vecs, _ = _post_embeddings([req.query])
|
| 598 |
col = f"proj_{req.project_id}"
|
| 599 |
-
|
| 600 |
-
# Recherche selon le store actif
|
| 601 |
try:
|
| 602 |
-
|
| 603 |
except Exception as e:
|
| 604 |
raise HTTPException(400, f"Search failed: {e}")
|
| 605 |
-
|
| 606 |
out = []
|
| 607 |
-
|
| 608 |
-
for p in hits:
|
| 609 |
-
pl = getattr(p, "payload", None) or {}
|
| 610 |
-
score = float(getattr(p, "score", 0.0))
|
| 611 |
txt = pl.get("text")
|
| 612 |
if txt and len(txt) > 800:
|
| 613 |
txt = txt[:800] + "..."
|
|
@@ -617,21 +579,24 @@ def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None))
|
|
| 617 |
"start": pl.get("start"),
|
| 618 |
"end": pl.get("end"),
|
| 619 |
"text": txt,
|
| 620 |
-
"score":
|
| 621 |
})
|
| 622 |
return {"results": out}
|
| 623 |
|
| 624 |
@app.post("/wipe")
|
| 625 |
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 626 |
-
|
| 627 |
-
raise HTTPException(401, "Unauthorized")
|
| 628 |
col = f"proj_{project_id}"
|
| 629 |
try:
|
| 630 |
-
STORE.wipe(col)
|
|
|
|
| 631 |
except Exception as e:
|
| 632 |
raise HTTPException(400, f"wipe failed: {e}")
|
| 633 |
|
| 634 |
-
#
|
|
|
|
|
|
|
|
|
|
| 635 |
if __name__ == "__main__":
|
| 636 |
import uvicorn
|
| 637 |
port = int(os.getenv("PORT", "7860"))
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
from __future__ import annotations
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
import uuid
|
| 7 |
+
import math
|
| 8 |
+
import random
|
| 9 |
+
import logging
|
| 10 |
from typing import List, Optional, Dict, Any, Tuple
|
| 11 |
|
| 12 |
import numpy as np
|
| 13 |
import requests
|
| 14 |
+
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException
|
| 15 |
from pydantic import BaseModel, Field
|
| 16 |
|
| 17 |
+
# ======================================================================================
|
| 18 |
+
# Logging
|
| 19 |
+
# ======================================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
|
| 21 |
LOG = logging.getLogger("remote_indexer")
|
| 22 |
|
| 23 |
+
# ======================================================================================
|
| 24 |
+
# ENV (config)
|
| 25 |
+
# ======================================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Ordre des backends d'embeddings à essayer (séparés par des virgules). Ex: "deepinfra,hf"
|
| 28 |
+
EMB_BACKEND_ORDER = [
|
| 29 |
+
s.strip().lower()
|
| 30 |
+
for s in os.getenv("EMB_BACKEND_ORDER", os.getenv("EMB_BACKEND", "deepinfra,hf")).split(",")
|
| 31 |
+
if s.strip()
|
| 32 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# --- DeepInfra Embeddings (OpenAI-like) ---
|
| 35 |
+
# API: POST https://api.deepinfra.com/v1/openai/embeddings
|
| 36 |
+
# Body: {"model":"BAAI/bge-m3","input":[text1,text2,...]}
|
|
|
|
|
|
|
| 37 |
DI_TOKEN = os.getenv("DEEPINFRA_API_KEY", "").strip()
|
| 38 |
DI_MODEL = os.getenv("DEEPINFRA_EMBED_MODEL", "BAAI/bge-m3").strip()
|
| 39 |
DI_URL = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/openai/embeddings").strip()
|
| 40 |
DI_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
|
| 41 |
|
| 42 |
+
# --- Hugging Face Inference API ---
|
| 43 |
+
# Deux endpoints possibles :
|
| 44 |
+
# 1) Pipeline feature-extraction (souvent 404 selon le modèle)
|
| 45 |
+
# 2) Models (parfois route sur SentenceSimilarity => besoin de forcer feature-extraction)
|
| 46 |
+
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
|
| 47 |
+
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2").strip()
|
| 48 |
+
HF_URL_PIPE = os.getenv("HF_API_URL_PIPELINE", "").strip() or (
|
| 49 |
+
f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}"
|
| 50 |
+
)
|
| 51 |
+
HF_URL_MODL = os.getenv("HF_API_URL_MODELS", "").strip() or (
|
| 52 |
+
f"https://api-inference.huggingface.co/models/{HF_MODEL}"
|
| 53 |
+
)
|
| 54 |
+
HF_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
|
| 55 |
+
HF_WAIT = os.getenv("HF_WAIT_FOR_MODEL", "true").lower() in ("1", "true", "yes", "on")
|
| 56 |
+
|
| 57 |
+
# --- Retries / backoff ---
|
| 58 |
+
RETRY_MAX = int(os.getenv("EMB_RETRY_MAX", "6")) # tentatives max par backend
|
| 59 |
+
RETRY_BASE_SEC = float(os.getenv("EMB_RETRY_BASE", "1.6")) # base du backoff exponentiel
|
| 60 |
+
RETRY_JITTER = float(os.getenv("EMB_RETRY_JITTER", "0.35")) # jitter fraction (0..1)
|
| 61 |
+
|
| 62 |
+
# --- Vector store (Qdrant / Memory fallback) ---
|
| 63 |
+
VECTOR_STORE = os.getenv("VECTOR_STORE", "qdrant").strip().lower()
|
| 64 |
+
QDRANT_URL = os.getenv("QDRANT_URL", "").strip()
|
| 65 |
+
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
|
| 66 |
|
| 67 |
+
# --- Auth d’API de ce service (simple header) ---
|
| 68 |
+
# Si défini, le client doit envoyer X-Auth-Token:{REMOTE_INDEX_TOKEN}
|
| 69 |
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()
|
| 70 |
|
| 71 |
LOG.info(f"Embeddings backend order = {EMB_BACKEND_ORDER}")
|
| 72 |
+
LOG.info(f"HF pipeline URL = {HF_URL_PIPE}")
|
| 73 |
+
LOG.info(f"HF models URL = {HF_URL_MODL}")
|
| 74 |
LOG.info(f"VECTOR_STORE = {VECTOR_STORE}")
|
| 75 |
+
|
|
|
|
| 76 |
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN:
|
| 77 |
LOG.warning("DEEPINFRA_API_KEY manquant — tentatives DeepInfra échoueront.")
|
| 78 |
+
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
|
| 79 |
+
LOG.warning("HF_API_TOKEN manquant — tentatives HF échoueront.")
|
| 80 |
|
| 81 |
+
# ======================================================================================
|
| 82 |
+
# Vector Stores (Memory + Qdrant)
|
| 83 |
+
# ======================================================================================
|
| 84 |
+
from typing import Iterable
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
try:
|
| 87 |
from qdrant_client import QdrantClient
|
|
|
|
| 90 |
QdrantClient = None
|
| 91 |
PointStruct = None
|
| 92 |
|
|
|
|
| 93 |
class BaseStore:
|
| 94 |
def ensure_collection(self, name: str, dim: int): ...
|
| 95 |
def upsert(self, name: str, vectors: np.ndarray, payloads: List[Dict[str, Any]]) -> int: ...
|
| 96 |
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]: ...
|
| 97 |
def wipe(self, name: str): ...
|
| 98 |
|
|
|
|
| 99 |
class MemoryStore(BaseStore):
|
| 100 |
+
"""Store en mémoire (volatile) — pour fallback et tests."""
|
| 101 |
def __init__(self):
|
| 102 |
+
self.db: Dict[str, Dict[str, Any]] = {} # name -> {"vecs":[np.ndarray], "payloads":[dict], "dim":int}
|
|
|
|
| 103 |
|
| 104 |
def ensure_collection(self, name: str, dim: int):
|
| 105 |
self.db.setdefault(name, {"vecs": [], "payloads": [], "dim": dim})
|
|
|
|
| 109 |
raise RuntimeError(f"MemoryStore: collection {name} inconnue")
|
| 110 |
if len(vectors) != len(payloads):
|
| 111 |
raise ValueError("MemoryStore.upsert: tailles vectors/payloads incohérentes")
|
| 112 |
+
self.db[name]["vecs"].extend([np.asarray(v, dtype=np.float32) for v in vectors])
|
| 113 |
self.db[name]["payloads"].extend(payloads)
|
| 114 |
return len(vectors)
|
| 115 |
|
| 116 |
def search(self, name: str, query_vec: np.ndarray, top_k: int) -> List[Dict[str, Any]]:
|
| 117 |
if name not in self.db or not self.db[name]["vecs"]:
|
| 118 |
return []
|
| 119 |
+
mat = np.vstack(self.db[name]["vecs"]).astype(np.float32) # [N, dim]
|
| 120 |
+
q = query_vec.reshape(1, -1).astype(np.float32) # [1, dim]
|
| 121 |
+
# cosine similarity (embeddings déjà normalisés en amont)
|
| 122 |
+
sims = (mat @ q.T).ravel()
|
|
|
|
| 123 |
top_idx = np.argsort(-sims)[:top_k]
|
| 124 |
out = []
|
| 125 |
for i in top_idx:
|
|
|
|
| 131 |
def wipe(self, name: str):
|
| 132 |
self.db.pop(name, None)
|
| 133 |
|
|
|
|
| 134 |
class QdrantStore(BaseStore):
|
| 135 |
+
"""Store Qdrant avec gestion d'IDs séquentiels (requis par PointStruct)."""
|
| 136 |
def __init__(self, url: str, api_key: Optional[str] = None):
|
| 137 |
if QdrantClient is None or PointStruct is None:
|
| 138 |
raise RuntimeError("qdrant_client non disponible")
|
| 139 |
self.client = QdrantClient(url=url, api_key=api_key if api_key else None)
|
|
|
|
| 140 |
self._next_ids: Dict[str, int] = {}
|
| 141 |
|
| 142 |
def _init_next_id(self, name: str):
|
|
|
|
| 143 |
try:
|
| 144 |
cnt = self.client.count(collection_name=name, exact=True).count
|
| 145 |
except Exception:
|
|
|
|
| 146 |
cnt = 0
|
| 147 |
self._next_ids[name] = int(cnt)
|
| 148 |
|
| 149 |
def ensure_collection(self, name: str, dim: int):
|
|
|
|
| 150 |
try:
|
| 151 |
self.client.get_collection(name)
|
| 152 |
except Exception:
|
|
|
|
| 154 |
collection_name=name,
|
| 155 |
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
|
| 156 |
)
|
|
|
|
| 157 |
if name not in self._next_ids:
|
| 158 |
self._init_next_id(name)
|
| 159 |
|
|
|
|
| 162 |
return 0
|
| 163 |
if len(vectors) != len(payloads):
|
| 164 |
raise ValueError("QdrantStore.upsert: tailles vectors/payloads incohérentes")
|
|
|
|
| 165 |
if name not in self._next_ids:
|
| 166 |
self._init_next_id(name)
|
| 167 |
|
| 168 |
start = self._next_ids[name]
|
|
|
|
| 169 |
pts = [
|
| 170 |
+
PointStruct(id=start + i,
|
| 171 |
+
vector=np.asarray(v, dtype=np.float32).tolist(),
|
| 172 |
+
payload=payloads[i])
|
| 173 |
for i, v in enumerate(vectors)
|
| 174 |
]
|
| 175 |
self.client.upsert(collection_name=name, points=pts)
|
|
|
|
| 187 |
out = []
|
| 188 |
for p in res:
|
| 189 |
pl = p.payload or {}
|
| 190 |
+
try:
|
| 191 |
+
pl["_score"] = float(p.score)
|
| 192 |
+
except Exception:
|
| 193 |
+
pl["_score"] = None
|
| 194 |
out.append(pl)
|
| 195 |
return out
|
| 196 |
|
|
|
|
| 201 |
pass
|
| 202 |
self._next_ids.pop(name, None)
|
| 203 |
|
| 204 |
+
# Initialisation du store actif (avec test de connexion)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
try:
|
| 206 |
if VECTOR_STORE == "qdrant" and QDRANT_URL:
|
| 207 |
+
STORE: BaseStore = QdrantStore(QDRANT_URL, api_key=QDRANT_API if QDRANT_API else None)
|
| 208 |
+
_ = STORE.client.get_collections() # ping
|
|
|
|
| 209 |
LOG.info("Connecté à Qdrant.")
|
| 210 |
VECTOR_STORE_ACTIVE = "QdrantStore"
|
| 211 |
else:
|
| 212 |
raise RuntimeError("Qdrant non configuré, fallback mémoire.")
|
| 213 |
except Exception as e:
|
| 214 |
+
LOG.error(f"Qdrant indisponible (Connexion Qdrant impossible: {e}) — fallback en mémoire.")
|
| 215 |
STORE = MemoryStore()
|
| 216 |
VECTOR_STORE_ACTIVE = "MemoryStore"
|
| 217 |
LOG.warning("Vector store: MEMORY (fallback). Les données sont volatiles (perdues au restart).")
|
| 218 |
|
| 219 |
+
# ======================================================================================
|
| 220 |
+
# Pydantic I/O
|
| 221 |
+
# ======================================================================================
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
class FileIn(BaseModel):
|
| 224 |
path: str
|
| 225 |
text: str
|
|
|
|
| 237 |
query: str
|
| 238 |
top_k: int = 6
|
| 239 |
|
| 240 |
+
# ======================================================================================
|
| 241 |
+
# Jobs store (mémoire)
|
| 242 |
+
# ======================================================================================
|
| 243 |
+
JOBS: Dict[str, Dict[str, Any]] = {} # {job_id: {"status": "...", "logs": [...], "created": ts}}
|
| 244 |
|
| 245 |
def _append_log(job_id: str, line: str):
|
| 246 |
job = JOBS.get(job_id)
|
| 247 |
+
if job:
|
| 248 |
+
job["logs"].append(line)
|
| 249 |
|
| 250 |
def _set_status(job_id: str, status: str):
|
| 251 |
job = JOBS.get(job_id)
|
| 252 |
+
if job:
|
| 253 |
+
job["status"] = status
|
| 254 |
|
| 255 |
def _auth(x_auth: Optional[str]):
|
| 256 |
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
|
| 257 |
+
raise HTTPException(401, "Unauthorized")
|
| 258 |
+
|
| 259 |
+
# ======================================================================================
|
| 260 |
+
# Embeddings backends + retry/fallback
|
| 261 |
+
# ======================================================================================
|
| 262 |
|
| 263 |
+
def _retry_sleep(attempt: int) -> float:
|
| 264 |
+
# backoff exponentiel + jitter
|
| 265 |
back = (RETRY_BASE_SEC ** attempt)
|
| 266 |
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
|
| 267 |
return max(0.25, back * jitter)
|
| 268 |
|
| 269 |
+
def _normalize_rows(arr: np.ndarray) -> np.ndarray:
|
| 270 |
+
arr = np.asarray(arr, dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 272 |
+
return (arr / norms).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
|
|
|
| 274 |
def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 275 |
if not DI_TOKEN:
|
| 276 |
raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
|
| 277 |
+
headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"}
|
| 278 |
payload = {"model": DI_MODEL, "input": batch}
|
| 279 |
r = requests.post(DI_URL, headers=headers, json=payload, timeout=DI_TIMEOUT)
|
| 280 |
+
size = int(r.headers.get("Content-Length", "0") or 0)
|
| 281 |
if r.status_code >= 400:
|
| 282 |
LOG.error(f"DeepInfra error {r.status_code}: {r.text[:1000]}")
|
| 283 |
r.raise_for_status()
|
|
|
|
| 289 |
arr = np.asarray(embs, dtype=np.float32)
|
| 290 |
if arr.ndim != 2:
|
| 291 |
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
|
| 292 |
+
return _normalize_rows(arr), size
|
|
|
|
|
|
|
| 293 |
|
| 294 |
+
def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 295 |
+
"""
|
| 296 |
+
1) On tente PIPELINE feature-extraction
|
| 297 |
+
2) Si 404 => on tente MODELS
|
| 298 |
+
2a) Si la route sélectionne SentenceSimilarity (erreur "missing 'sentences'"),
|
| 299 |
+
on reforce la tâche feature-extraction par ?task=feature-extraction + X-Task
|
| 300 |
+
"""
|
| 301 |
+
if not HF_TOKEN:
|
| 302 |
+
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
|
| 303 |
+
headers = {
|
| 304 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
| 305 |
+
"Content-Type": "application/json",
|
| 306 |
+
}
|
| 307 |
+
if HF_WAIT:
|
| 308 |
+
headers["X-Wait-For-Model"] = "true"
|
| 309 |
+
headers["X-Use-Cache"] = "true"
|
| 310 |
+
|
| 311 |
+
# Helper interne
|
| 312 |
+
def _call(url: str, payload: Dict[str, Any], extra_headers: Optional[Dict[str, str]] = None):
|
| 313 |
+
h = dict(headers)
|
| 314 |
+
if extra_headers:
|
| 315 |
+
h.update(extra_headers)
|
| 316 |
+
r = requests.post(url, headers=h, json=payload, timeout=HF_TIMEOUT)
|
| 317 |
+
return r
|
| 318 |
+
|
| 319 |
+
# 1) Pipeline
|
| 320 |
+
payload = {"inputs": batch if len(batch) > 1 else batch[0]}
|
| 321 |
+
r = _call(HF_URL_PIPE, payload)
|
| 322 |
+
size = int(r.headers.get("Content-Length", "0") or 0)
|
| 323 |
+
if r.status_code == 404:
|
| 324 |
+
LOG.error("HF error 404: Not Found")
|
| 325 |
+
LOG.warning(f"HF endpoint {HF_URL_PIPE} non dispo (404), fallback vers alternative ...")
|
| 326 |
+
elif r.status_code >= 400:
|
| 327 |
+
LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
|
| 328 |
+
r.raise_for_status()
|
| 329 |
+
# si on arrive ici, pas de fallback (raise)
|
| 330 |
+
else:
|
| 331 |
+
data = r.json()
|
| 332 |
+
arr = np.array(data, dtype=np.float32)
|
| 333 |
+
if arr.ndim == 3: # [batch, tokens, dim]
|
| 334 |
+
arr = arr.mean(axis=1)
|
| 335 |
+
if arr.ndim == 1:
|
| 336 |
+
arr = arr.reshape(1, -1)
|
| 337 |
+
if arr.ndim != 2:
|
| 338 |
+
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
|
| 339 |
+
return _normalize_rows(arr), size
|
| 340 |
+
|
| 341 |
+
# 2) MODELS
|
| 342 |
+
r2 = _call(HF_URL_MODL, payload)
|
| 343 |
+
size2 = int(r2.headers.get("Content-Length", "0") or 0)
|
| 344 |
+
if r2.status_code >= 400:
|
| 345 |
+
LOG.error(f"HF error {r2.status_code}: {r2.text[:1000]}")
|
| 346 |
+
# Si c'est la fameuse erreur Similarity => tenter X-Task + query param
|
| 347 |
+
if r2.status_code == 400 and "SentenceSimilarityPipeline" in (r2.text or ""):
|
| 348 |
+
LOG.warning("HF MODELS a choisi Similarity -> retry avec ?task=feature-extraction + X-Task")
|
| 349 |
+
r3 = _call(
|
| 350 |
+
HF_URL_MODL + "?task=feature-extraction",
|
| 351 |
+
payload,
|
| 352 |
+
extra_headers={"X-Task": "feature-extraction"}
|
| 353 |
+
)
|
| 354 |
+
size3 = int(r3.headers.get("Content-Length", "0") or 0)
|
| 355 |
+
if r3.status_code >= 400:
|
| 356 |
+
LOG.error(f"HF error {r3.status_code}: {r3.text[:1000]}")
|
| 357 |
+
r3.raise_for_status()
|
| 358 |
+
data3 = r3.json()
|
| 359 |
+
arr3 = np.array(data3, dtype=np.float32)
|
| 360 |
+
if arr3.ndim == 3:
|
| 361 |
+
arr3 = arr3.mean(axis=1)
|
| 362 |
+
if arr3.ndim == 1:
|
| 363 |
+
arr3 = arr3.reshape(1, -1)
|
| 364 |
+
if arr3.ndim != 2:
|
| 365 |
+
raise RuntimeError(f"HF: unexpected embeddings shape: {arr3.shape}")
|
| 366 |
+
return _normalize_rows(arr3), size3
|
| 367 |
+
else:
|
| 368 |
+
r2.raise_for_status()
|
| 369 |
+
data2 = r2.json()
|
| 370 |
+
arr2 = np.array(data2, dtype=np.float32)
|
| 371 |
+
if arr2.ndim == 3: # [batch, tokens, dim]
|
| 372 |
+
arr2 = arr2.mean(axis=1)
|
| 373 |
+
if arr2.ndim == 1:
|
| 374 |
+
arr2 = arr2.reshape(1, -1)
|
| 375 |
+
if arr2.ndim != 2:
|
| 376 |
+
raise RuntimeError(f"HF: unexpected embeddings shape: {arr2.shape}")
|
| 377 |
+
return _normalize_rows(arr2), size2
|
| 378 |
|
| 379 |
def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
| 380 |
last_exc = None
|
|
|
|
| 402 |
raise RuntimeError(f"{label}: retries exhausted: {last_exc}")
|
| 403 |
|
| 404 |
def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
| 405 |
+
"""
|
| 406 |
+
Essaie les backends dans EMB_BACKEND_ORDER avec retries.
|
| 407 |
+
Ex: EMB_BACKEND_ORDER=deepinfra,hf
|
| 408 |
+
"""
|
| 409 |
last_err = None
|
|
|
|
| 410 |
for b in EMB_BACKEND_ORDER:
|
| 411 |
+
if b == "deepinfra":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
try:
|
| 413 |
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
| 414 |
except Exception as e:
|
| 415 |
last_err = e
|
| 416 |
_append_log(job_id, f"DeepInfra failed: {e}.")
|
| 417 |
LOG.error(f"DeepInfra failed: {e}")
|
| 418 |
+
elif b == "hf":
|
| 419 |
+
try:
|
| 420 |
+
return _call_with_retries(_hf_post_embeddings_once, batch, "HF", job_id)
|
| 421 |
+
except Exception as e:
|
| 422 |
+
last_err = e
|
| 423 |
+
_append_log(job_id, f"HF failed: {e}.")
|
| 424 |
+
LOG.error(f"HF failed: {e}")
|
| 425 |
+
# Si HF route vers SentenceSimilarity (erreur 'sentences'), on peut tenter auto-fallback DI
|
| 426 |
+
if "SentenceSimilarityPipeline" in str(e) and "deepinfra" not in EMB_BACKEND_ORDER:
|
| 427 |
+
_append_log(job_id, "Auto-fallback DeepInfra (HF => SentenceSimilarity).")
|
| 428 |
+
try:
|
| 429 |
+
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
| 430 |
+
except Exception as e2:
|
| 431 |
+
last_err = e2
|
| 432 |
+
_append_log(job_id, f"DeepInfra failed after HF: {e2}.")
|
| 433 |
+
LOG.error(f"DeepInfra failed after HF: {e2}")
|
| 434 |
else:
|
| 435 |
_append_log(job_id, f"Backend inconnu ignoré: {b}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
raise RuntimeError(f"Tous les backends ont échoué: {last_err}")
|
| 437 |
|
| 438 |
+
# ======================================================================================
|
| 439 |
+
# Helpers chunking
|
| 440 |
+
# ======================================================================================
|
| 441 |
+
|
| 442 |
def _chunk_with_spans(text: str, size: int, overlap: int):
|
| 443 |
n = len(text or "")
|
| 444 |
if size <= 0:
|
|
|
|
| 448 |
j = min(n, i + size)
|
| 449 |
yield (i, j, text[i:j])
|
| 450 |
i = max(0, j - overlap)
|
| 451 |
+
if i >= n:
|
| 452 |
+
break
|
| 453 |
+
|
| 454 |
+
# ======================================================================================
|
| 455 |
+
# Background task : indexation
|
| 456 |
+
# ======================================================================================
|
| 457 |
|
|
|
|
| 458 |
def run_index_job(job_id: str, req: IndexRequest):
|
| 459 |
try:
|
| 460 |
_set_status(job_id, "running")
|
|
|
|
| 461 |
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER} | store={VECTOR_STORE}")
|
| 462 |
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
|
| 463 |
|
| 464 |
# Warmup -> dimension
|
| 465 |
+
warm = next(_chunk_with_spans(req.files[0].text if req.files else "", req.chunk_size, req.overlap))[2] if req.files else "warmup"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
embs, _ = _post_embeddings([warm], job_id=job_id)
|
| 467 |
dim = embs.shape[1]
|
| 468 |
col = f"proj_{req.project_id}"
|
| 469 |
+
|
| 470 |
+
# Créer/assurer la collection
|
| 471 |
STORE.ensure_collection(col, dim)
|
| 472 |
_append_log(job_id, f"Collection ready: {col} (dim={dim})")
|
| 473 |
|
| 474 |
+
total_chunks = 0
|
| 475 |
+
buf_chunks: List[str] = []
|
| 476 |
+
buf_metas: List[Dict[str, Any]] = []
|
| 477 |
+
|
| 478 |
+
def _flush():
|
| 479 |
+
nonlocal buf_chunks, buf_metas, total_chunks
|
| 480 |
+
if not buf_chunks:
|
| 481 |
+
return
|
| 482 |
+
vecs, sz = _post_embeddings(buf_chunks, job_id=job_id)
|
| 483 |
+
added = STORE.upsert(col, vecs, buf_metas)
|
| 484 |
+
total_chunks += added
|
| 485 |
+
_append_log(job_id, f"+{added} chunks (total={total_chunks}) ~{(sz/1024.0):.1f}KiB")
|
| 486 |
+
buf_chunks, buf_metas = [], []
|
| 487 |
+
|
| 488 |
+
# Boucle fichiers + chunks
|
| 489 |
for fi, f in enumerate(req.files, 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
|
| 491 |
+
buf_chunks.append(chunk_txt)
|
|
|
|
|
|
|
| 492 |
meta = {"path": f.path, "chunk": ci, "start": start, "end": end}
|
| 493 |
if req.store_text:
|
| 494 |
meta["text"] = chunk_txt
|
| 495 |
+
buf_metas.append(meta)
|
| 496 |
+
if len(buf_chunks) >= req.batch_size:
|
| 497 |
_flush()
|
| 498 |
+
_append_log(job_id, f"file {fi}/{len(req.files)}: +{req.batch_size} chunks (total={total_chunks})")
|
| 499 |
+
# flush fin de fichier
|
| 500 |
_flush()
|
| 501 |
+
_append_log(job_id, f"file {fi}/{len(req.files)} processed.")
|
| 502 |
|
| 503 |
_append_log(job_id, f"Done. chunks={total_chunks}")
|
| 504 |
_set_status(job_id, "done")
|
| 505 |
LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
|
| 506 |
+
|
| 507 |
except Exception as e:
|
| 508 |
LOG.exception("Index job failed")
|
| 509 |
_append_log(job_id, f"ERROR: {e}")
|
| 510 |
_set_status(job_id, "error")
|
| 511 |
|
| 512 |
+
# ======================================================================================
|
| 513 |
+
# API
|
| 514 |
+
# ======================================================================================
|
| 515 |
+
|
| 516 |
app = FastAPI()
|
| 517 |
|
| 518 |
@app.get("/")
|
|
|
|
| 521 |
"ok": True,
|
| 522 |
"service": "remote-indexer",
|
| 523 |
"backends": EMB_BACKEND_ORDER,
|
| 524 |
+
"hf_url_pipeline": HF_URL_PIPE if "hf" in EMB_BACKEND_ORDER else None,
|
| 525 |
+
"hf_url_models": HF_URL_MODL if "hf" in EMB_BACKEND_ORDER else None,
|
| 526 |
"di_url": DI_URL if "deepinfra" in EMB_BACKEND_ORDER else None,
|
| 527 |
"di_model": DI_MODEL if "deepinfra" in EMB_BACKEND_ORDER else None,
|
| 528 |
"vector_store": VECTOR_STORE,
|
| 529 |
+
"vector_store_active": VECTOR_STORE_ACTIVE,
|
| 530 |
+
"docs": "/health, /index, /status/{job_id}, /query, /wipe",
|
| 531 |
}
|
| 532 |
|
| 533 |
@app.get("/health")
|
| 534 |
def health():
|
| 535 |
+
return {"ok": True, "store": VECTOR_STORE_ACTIVE}
|
| 536 |
|
| 537 |
def _check_backend_ready():
|
| 538 |
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
|
|
|
|
| 542 |
|
| 543 |
@app.post("/index")
|
| 544 |
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
|
| 545 |
+
_auth(x_auth_token)
|
|
|
|
| 546 |
_check_backend_ready()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
job_id = uuid.uuid4().hex[:12]
|
| 548 |
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
|
| 549 |
background_tasks.add_task(run_index_job, job_id, req)
|
|
|
|
| 551 |
|
| 552 |
@app.get("/status/{job_id}")
|
| 553 |
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 554 |
+
_auth(x_auth_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
j = JOBS.get(job_id)
|
| 556 |
if not j:
|
| 557 |
raise HTTPException(404, "job inconnu")
|
| 558 |
+
# garder les derniers logs pour éviter de gonfler la réponse
|
| 559 |
+
return {"status": j["status"], "logs": j["logs"][-1200:]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
@app.post("/query")
|
| 562 |
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
|
| 563 |
+
_auth(x_auth_token)
|
|
|
|
| 564 |
_check_backend_ready()
|
|
|
|
|
|
|
| 565 |
vecs, _ = _post_embeddings([req.query])
|
| 566 |
col = f"proj_{req.project_id}"
|
|
|
|
|
|
|
| 567 |
try:
|
| 568 |
+
results = STORE.search(col, vecs[0], int(req.top_k))
|
| 569 |
except Exception as e:
|
| 570 |
raise HTTPException(400, f"Search failed: {e}")
|
|
|
|
| 571 |
out = []
|
| 572 |
+
for pl in results:
|
|
|
|
|
|
|
|
|
|
| 573 |
txt = pl.get("text")
|
| 574 |
if txt and len(txt) > 800:
|
| 575 |
txt = txt[:800] + "..."
|
|
|
|
| 579 |
"start": pl.get("start"),
|
| 580 |
"end": pl.get("end"),
|
| 581 |
"text": txt,
|
| 582 |
+
"score": float(pl.get("_score")) if pl.get("_score") is not None else None
|
| 583 |
})
|
| 584 |
return {"results": out}
|
| 585 |
|
| 586 |
@app.post("/wipe")
|
| 587 |
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 588 |
+
_auth(x_auth_token)
|
|
|
|
| 589 |
col = f"proj_{project_id}"
|
| 590 |
try:
|
| 591 |
+
STORE.wipe(col)
|
| 592 |
+
return {"ok": True}
|
| 593 |
except Exception as e:
|
| 594 |
raise HTTPException(400, f"wipe failed: {e}")
|
| 595 |
|
| 596 |
+
# ======================================================================================
|
| 597 |
+
# Entrypoint
|
| 598 |
+
# ======================================================================================
|
| 599 |
+
|
| 600 |
if __name__ == "__main__":
|
| 601 |
import uvicorn
|
| 602 |
port = int(os.getenv("PORT", "7860"))
|