Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,24 +1,28 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
"""
|
| 11 |
|
| 12 |
from __future__ import annotations
|
|
|
|
| 13 |
import os
|
| 14 |
import io
|
| 15 |
import json
|
| 16 |
import time
|
| 17 |
-
import tarfile
|
| 18 |
-
import logging
|
| 19 |
import hashlib
|
|
|
|
|
|
|
|
|
|
| 20 |
from typing import List, Dict, Any, Tuple, Optional
|
| 21 |
|
|
|
|
|
|
|
| 22 |
import numpy as np
|
| 23 |
import faiss
|
| 24 |
from fastapi import FastAPI, HTTPException
|
|
@@ -26,132 +30,141 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
| 26 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 27 |
from pydantic import BaseModel
|
| 28 |
|
| 29 |
-
|
| 30 |
-
# CONFIGURATION (variables d’environnement – modifiable à la volée)
|
| 31 |
-
# --------------------------------------------------------------------------- #
|
| 32 |
-
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower()
|
| 33 |
-
EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-mpnet-base-v2").strip()
|
| 34 |
-
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
|
| 35 |
-
EMB_DIM = int(os.getenv("EMB_DIM", "64")) # ← dimension réduite (ex. 64)
|
| 36 |
-
|
| 37 |
-
# FAISS quantisation
|
| 38 |
-
FAISS_TYPE = os.getenv("FAISS_TYPE", "IVF_PQ").upper() # FLAT ou IVF_PQ
|
| 39 |
-
FAISS_NLIST = int(os.getenv("FAISS_NLIST", "100")) # nb de centroides (IVF)
|
| 40 |
-
FAISS_M = int(os.getenv("FAISS_M", "8")) # sous‑vecteurs (PQ)
|
| 41 |
-
FAISS_NBITS = int(os.getenv("FAISS_NBITS", "8")) # bits / sous‑vecteur
|
| 42 |
-
|
| 43 |
-
# Stockage du texte brut dans le dataset ? (False → économise disque)
|
| 44 |
-
STORE_TEXT = os.getenv("STORE_TEXT", "false").lower() in ("1", "true", "yes")
|
| 45 |
|
| 46 |
# --------------------------------------------------------------------------- #
|
| 47 |
# LOGGING
|
| 48 |
# --------------------------------------------------------------------------- #
|
| 49 |
-
LOG = logging.getLogger("
|
| 50 |
if not LOG.handlers:
|
| 51 |
h = logging.StreamHandler()
|
| 52 |
-
h.setFormatter(logging.Formatter("
|
| 53 |
LOG.addHandler(h)
|
| 54 |
LOG.setLevel(logging.INFO)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# --------------------------------------------------------------------------- #
|
| 57 |
-
#
|
| 58 |
# --------------------------------------------------------------------------- #
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
(via Git si disponible, sinon fallback os.walk).
|
| 63 |
-
"""
|
| 64 |
-
if not os.path.isdir(repo_dir):
|
| 65 |
-
return []
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# fichiers trackés
|
| 73 |
-
tracked = repo.git.ls_files().splitlines()
|
| 74 |
-
files.extend(tracked)
|
| 75 |
-
|
| 76 |
-
# fichiers non‑trackés mais non ignorés
|
| 77 |
-
untracked = repo.git.ls_files(others=True, exclude_standard=True).splitlines()
|
| 78 |
-
files.extend(untracked)
|
| 79 |
-
|
| 80 |
-
# filtrage simple
|
| 81 |
-
files = [
|
| 82 |
-
f for f in files
|
| 83 |
-
if not f.startswith('.git/') and not any(p.startswith('.') for p in f.split(os.sep))
|
| 84 |
-
]
|
| 85 |
-
files = sorted(set(files))[:top_k]
|
| 86 |
-
except Exception as e:
|
| 87 |
-
LOG.debug("Git indisponible / pas un dépôt → fallback os.walk : %s", e)
|
| 88 |
-
for root, _, names in os.walk(repo_dir):
|
| 89 |
-
for name in sorted(names):
|
| 90 |
-
if name.startswith('.'):
|
| 91 |
-
continue
|
| 92 |
-
rel = os.path.relpath(os.path.join(root, name), repo_dir)
|
| 93 |
-
if rel.startswith('.git') or any(p.startswith('.') for p in rel.split(os.sep)):
|
| 94 |
-
continue
|
| 95 |
-
files.append(rel)
|
| 96 |
-
if len(files) >= top_k:
|
| 97 |
-
break
|
| 98 |
-
if len(files) >= top_k:
|
| 99 |
-
break
|
| 100 |
-
files = sorted(set(files))
|
| 101 |
-
|
| 102 |
-
return files
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
def read_file_safe(file_path: str) -> str:
|
| 106 |
-
"""Lit un fichier en UTF‑8, ignore les erreurs."""
|
| 107 |
-
try:
|
| 108 |
-
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
| 109 |
-
return f.read()
|
| 110 |
-
except Exception as e:
|
| 111 |
-
LOG.error("Erreur lecture %s : %s", file_path, e)
|
| 112 |
-
return f"# Erreur lecture : {e}"
|
| 113 |
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
# --------------------------------------------------------------------------- #
|
| 128 |
-
#
|
| 129 |
# --------------------------------------------------------------------------- #
|
| 130 |
-
|
| 131 |
-
"""Classe factice – aucune fonctionnalité réelle."""
|
| 132 |
-
pass
|
| 133 |
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
def
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
def
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
# --------------------------------------------------------------------------- #
|
| 146 |
# EMBEDDING PROVIDERS
|
| 147 |
# --------------------------------------------------------------------------- #
|
| 148 |
-
_ST_MODEL
|
| 149 |
-
_HF_TOKENIZER
|
| 150 |
-
_HF_MODEL
|
| 151 |
-
|
| 152 |
|
| 153 |
def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
|
| 154 |
-
"""Vecteurs aléatoires déterministes (SHA‑1 → seed)."""
|
| 155 |
vecs = np.zeros((len(texts), dim), dtype="float32")
|
| 156 |
for i, t in enumerate(texts):
|
| 157 |
h = hashlib.sha1((t or "").encode("utf-8")).digest()
|
|
@@ -160,16 +173,14 @@ def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
|
|
| 160 |
vecs[i] = v / (np.linalg.norm(v) + 1e-9)
|
| 161 |
return vecs
|
| 162 |
|
| 163 |
-
|
| 164 |
def _get_st_model():
|
| 165 |
global _ST_MODEL
|
| 166 |
if _ST_MODEL is None:
|
| 167 |
from sentence_transformers import SentenceTransformer
|
| 168 |
-
_ST_MODEL = SentenceTransformer(EMB_MODEL, cache_folder=
|
| 169 |
-
LOG.info("[st] modèle chargé : %s", EMB_MODEL)
|
| 170 |
return _ST_MODEL
|
| 171 |
|
| 172 |
-
|
| 173 |
def _emb_st(texts: List[str]) -> np.ndarray:
|
| 174 |
model = _get_st_model()
|
| 175 |
vecs = model.encode(
|
|
@@ -181,25 +192,22 @@ def _emb_st(texts: List[str]) -> np.ndarray:
|
|
| 181 |
).astype("float32")
|
| 182 |
return vecs
|
| 183 |
|
| 184 |
-
|
| 185 |
def _get_hf_model():
|
| 186 |
global _HF_TOKENIZER, _HF_MODEL
|
| 187 |
if _HF_MODEL is None or _HF_TOKENIZER is None:
|
| 188 |
from transformers import AutoTokenizer, AutoModel
|
| 189 |
-
_HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL, cache_dir=
|
| 190 |
-
_HF_MODEL = AutoModel.from_pretrained(EMB_MODEL, cache_dir=
|
| 191 |
_HF_MODEL.eval()
|
| 192 |
-
LOG.info("[hf] modèle chargé : %s", EMB_MODEL)
|
| 193 |
return _HF_TOKENIZER, _HF_MODEL
|
| 194 |
|
| 195 |
-
|
| 196 |
def _mean_pool(last_hidden_state: np.ndarray, attention_mask: np.ndarray) -> np.ndarray:
|
| 197 |
mask = attention_mask[..., None].astype(last_hidden_state.dtype)
|
| 198 |
summed = (last_hidden_state * mask).sum(axis=1)
|
| 199 |
counts = mask.sum(axis=1).clip(min=1e-9)
|
| 200 |
return summed / counts
|
| 201 |
|
| 202 |
-
|
| 203 |
def _emb_hf(texts: List[str]) -> np.ndarray:
|
| 204 |
import torch
|
| 205 |
tok, mod = _get_hf_model()
|
|
@@ -215,21 +223,10 @@ def _emb_hf(texts: List[str]) -> np.ndarray:
|
|
| 215 |
all_vecs.append(pooled.astype("float32"))
|
| 216 |
return np.concatenate(all_vecs, axis=0)
|
| 217 |
|
| 218 |
-
|
| 219 |
-
def _reduce_dim(vectors: np.ndarray, target_dim: int = EMB_DIM) -> np.ndarray:
|
| 220 |
-
"""PCA simple pour réduire la dimension (si target_dim < current)."""
|
| 221 |
-
if target_dim >= vectors.shape[1]:
|
| 222 |
-
return vectors
|
| 223 |
-
from sklearn.decomposition import PCA
|
| 224 |
-
pca = PCA(n_components=target_dim, random_state=0)
|
| 225 |
-
return pca.fit_transform(vectors).astype("float32")
|
| 226 |
-
|
| 227 |
-
|
| 228 |
# --------------------------------------------------------------------------- #
|
| 229 |
# DATASET / FAISS I/O
|
| 230 |
# --------------------------------------------------------------------------- #
|
| 231 |
-
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]], store_text: bool =
|
| 232 |
-
"""Sauvegarde le dataset au format JSONL (optionnellement sans le texte)."""
|
| 233 |
os.makedirs(ds_dir, exist_ok=True)
|
| 234 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 235 |
with open(data_path, "w", encoding="utf-8") as f:
|
|
@@ -241,7 +238,6 @@ def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]], store_text: bool = ST
|
|
| 241 |
with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f:
|
| 242 |
json.dump(meta, f, ensure_ascii=False, indent=2)
|
| 243 |
|
| 244 |
-
|
| 245 |
def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
|
| 246 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 247 |
if not os.path.isfile(data_path):
|
|
@@ -255,80 +251,50 @@ def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
|
|
| 255 |
continue
|
| 256 |
return out
|
| 257 |
|
| 258 |
-
|
| 259 |
def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any]) -> None:
|
| 260 |
-
"""Sauvegarde un index FAISS quantisé (IVF‑PQ) ou plat selon FAISS_TYPE."""
|
| 261 |
os.makedirs(fx_dir, exist_ok=True)
|
| 262 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
# entraînement sur un sous‑échantillon (max 10 k vecteurs)
|
| 270 |
-
rng = np.random.default_rng(0)
|
| 271 |
-
train = xb[rng.choice(xb.shape[0], min(10_000, xb.shape[0]), replace=False)]
|
| 272 |
-
index.train(train)
|
| 273 |
-
|
| 274 |
-
index.add(xb)
|
| 275 |
-
meta.update({
|
| 276 |
-
"index_type": "IVF_PQ",
|
| 277 |
-
"nlist": FAISS_NLIST,
|
| 278 |
-
"m": FAISS_M,
|
| 279 |
-
"nbits": FAISS_NBITS,
|
| 280 |
-
})
|
| 281 |
-
else: # FLAT (fallback)
|
| 282 |
-
index = faiss.IndexFlatIP(xb.shape[1])
|
| 283 |
-
index.add(xb)
|
| 284 |
-
meta.update({"index_type": "FLAT"})
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
faiss.write_index(index, idx_path)
|
| 287 |
|
| 288 |
-
|
| 289 |
with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f:
|
| 290 |
json.dump(meta, f, ensure_ascii=False, indent=2)
|
| 291 |
|
| 292 |
-
|
| 293 |
def _load_faiss(fx_dir: str) -> faiss.Index:
|
| 294 |
-
"""Charge l’index en mode mmap (lecture à la volée)."""
|
| 295 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 296 |
if not os.path.isfile(idx_path):
|
| 297 |
raise FileNotFoundError(f"FAISS index introuvable : {idx_path}")
|
| 298 |
-
# mmap
|
| 299 |
return faiss.read_index(idx_path, faiss.IO_FLAG_MMAP)
|
| 300 |
|
| 301 |
-
|
| 302 |
def _tar_dir_to_bytes(dir_path: str) -> bytes:
|
| 303 |
-
"""Archive gzip du répertoire (compression maximale)."""
|
| 304 |
bio = io.BytesIO()
|
| 305 |
with tarfile.open(fileobj=bio, mode="w:gz", compresslevel=9) as tar:
|
| 306 |
tar.add(dir_path, arcname=os.path.basename(dir_path))
|
| 307 |
bio.seek(0)
|
| 308 |
return bio.read()
|
| 309 |
|
| 310 |
-
|
| 311 |
# --------------------------------------------------------------------------- #
|
| 312 |
-
#
|
| 313 |
# --------------------------------------------------------------------------- #
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
MAX_WORKERS = max(1, int(os.getenv("MAX_WORKERS", "1")))
|
| 317 |
-
EXECUTOR = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
| 318 |
LOG.info("ThreadPoolExecutor initialisé : max_workers=%s", MAX_WORKERS)
|
| 319 |
|
| 320 |
-
|
| 321 |
-
def _proj_dirs(project_id: str) -> Tuple[str, str, str]:
|
| 322 |
-
base = os.path.join(os.getenv("DATA_ROOT", "/tmp/data"), project_id)
|
| 323 |
-
ds_dir = os.path.join(base, "dataset")
|
| 324 |
-
fx_dir = os.path.join(base, "faiss")
|
| 325 |
-
os.makedirs(ds_dir, exist_ok=True)
|
| 326 |
-
os.makedirs(fx_dir, exist_ok=True)
|
| 327 |
-
return base, ds_dir, fx_dir
|
| 328 |
-
|
| 329 |
-
|
| 330 |
def _do_index_job(
|
| 331 |
-
st:
|
| 332 |
files: List[Dict[str, str]],
|
| 333 |
chunk_size: int,
|
| 334 |
overlap: int,
|
|
@@ -339,16 +305,15 @@ def _do_index_job(
|
|
| 339 |
Pipeline complet :
|
| 340 |
1️⃣ Chunking
|
| 341 |
2️⃣ Embedding (dummy / st / hf)
|
| 342 |
-
3️⃣ Réduction de dimension (PCA) si
|
| 343 |
-
4️⃣ Sauvegarde dataset (optionnel
|
| 344 |
5️⃣ Index FAISS quantisé + mmap
|
| 345 |
"""
|
| 346 |
try:
|
| 347 |
base, ds_dir, fx_dir = _proj_dirs(st.project_id)
|
| 348 |
|
| 349 |
-
#
|
| 350 |
-
|
| 351 |
-
# ------------------------------------------------------------------- #
|
| 352 |
rows: List[Dict[str, Any]] = []
|
| 353 |
st.total_files = len(files)
|
| 354 |
|
|
@@ -360,12 +325,12 @@ def _do_index_job(
|
|
| 360 |
rows.append({"path": path, "text": ck, "chunk_id": i})
|
| 361 |
|
| 362 |
st.total_chunks = len(rows)
|
| 363 |
-
|
| 364 |
|
| 365 |
-
#
|
| 366 |
-
|
| 367 |
-
# ------------------------------------------------------------------- #
|
| 368 |
texts = [r["text"] for r in rows]
|
|
|
|
| 369 |
if EMB_PROVIDER == "dummy":
|
| 370 |
xb = _emb_dummy(texts, dim=EMB_DIM)
|
| 371 |
elif EMB_PROVIDER == "st":
|
|
@@ -373,23 +338,22 @@ def _do_index_job(
|
|
| 373 |
else:
|
| 374 |
xb = _emb_hf(texts)
|
| 375 |
|
| 376 |
-
#
|
| 377 |
-
# 3️⃣ Réduction de dimension (si nécessaire)
|
| 378 |
-
# ------------------------------------------------------------------- #
|
| 379 |
if xb.shape[1] != EMB_DIM:
|
| 380 |
-
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
st.embedded = xb.shape[0]
|
| 383 |
-
|
| 384 |
|
| 385 |
-
#
|
| 386 |
-
# 4️⃣ Sauvegarde du dataset
|
| 387 |
-
# ------------------------------------------------------------------- #
|
| 388 |
_save_dataset(ds_dir, rows, store_text=store_text)
|
|
|
|
| 389 |
|
| 390 |
-
#
|
| 391 |
-
|
| 392 |
-
# ------------------------------------------------------------------- #
|
| 393 |
meta = {
|
| 394 |
"dim": int(xb.shape[1]),
|
| 395 |
"count": int(xb.shape[0]),
|
|
@@ -398,16 +362,14 @@ def _do_index_job(
|
|
| 398 |
}
|
| 399 |
_save_faiss(fx_dir, xb, meta)
|
| 400 |
st.indexed = int(xb.shape[0])
|
| 401 |
-
|
| 402 |
|
| 403 |
-
|
| 404 |
-
# Finalisation
|
| 405 |
-
# ------------------------------------------------------------------- #
|
| 406 |
-
st.stage = "done"
|
| 407 |
st.finished_at = time.time()
|
| 408 |
except Exception as e:
|
| 409 |
LOG.exception("Job %s échoué", st.job_id)
|
| 410 |
st.errors.append(str(e))
|
|
|
|
| 411 |
st.stage = "failed"
|
| 412 |
st.finished_at = time.time()
|
| 413 |
|
|
@@ -438,7 +400,6 @@ def _submit_job(
|
|
| 438 |
st.stage = "queued"
|
| 439 |
return job_id
|
| 440 |
|
| 441 |
-
|
| 442 |
# --------------------------------------------------------------------------- #
|
| 443 |
# FASTAPI
|
| 444 |
# --------------------------------------------------------------------------- #
|
|
@@ -451,20 +412,17 @@ fastapi_app.add_middleware(
|
|
| 451 |
allow_headers=["*"],
|
| 452 |
)
|
| 453 |
|
| 454 |
-
|
| 455 |
class FileItem(BaseModel):
|
| 456 |
path: str
|
| 457 |
text: str
|
| 458 |
|
| 459 |
-
|
| 460 |
class IndexRequest(BaseModel):
|
| 461 |
project_id: str
|
| 462 |
files: List[FileItem]
|
| 463 |
chunk_size: int = 200
|
| 464 |
overlap: int = 20
|
| 465 |
batch_size: int = 32
|
| 466 |
-
store_text: bool =
|
| 467 |
-
|
| 468 |
|
| 469 |
@fastapi_app.get("/health")
|
| 470 |
def health():
|
|
@@ -475,14 +433,15 @@ def health():
|
|
| 475 |
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
|
| 476 |
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
|
| 477 |
"workers": MAX_WORKERS,
|
| 478 |
-
"data_root":
|
| 479 |
-
"faiss_type": FAISS_TYPE,
|
| 480 |
"emb_dim": EMB_DIM,
|
| 481 |
}
|
| 482 |
|
| 483 |
-
|
| 484 |
@fastapi_app.post("/index")
|
| 485 |
def index(req: IndexRequest):
|
|
|
|
|
|
|
|
|
|
| 486 |
try:
|
| 487 |
files = [fi.model_dump() for fi in req.files]
|
| 488 |
job_id = _submit_job(
|
|
@@ -498,7 +457,6 @@ def index(req: IndexRequest):
|
|
| 498 |
LOG.exception("Erreur soumission index")
|
| 499 |
raise HTTPException(status_code=500, detail=str(e))
|
| 500 |
|
| 501 |
-
|
| 502 |
@fastapi_app.get("/status/{job_id}")
|
| 503 |
def status(job_id: str):
|
| 504 |
st = JOBS.get(job_id)
|
|
@@ -506,26 +464,25 @@ def status(job_id: str):
|
|
| 506 |
raise HTTPException(status_code=404, detail="job inconnu")
|
| 507 |
return JSONResponse(st.model_dump())
|
| 508 |
|
| 509 |
-
|
| 510 |
class SearchRequest(BaseModel):
|
| 511 |
project_id: str
|
| 512 |
query: str
|
| 513 |
k: int = 5
|
| 514 |
|
| 515 |
-
|
| 516 |
@fastapi_app.post("/search")
|
| 517 |
def search(req: SearchRequest):
|
| 518 |
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
|
| 519 |
|
| 520 |
-
# Vérifier
|
| 521 |
-
if not (os.path.isfile(os.path.join(fx_dir, "emb.faiss")) and
|
|
|
|
| 522 |
raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)")
|
| 523 |
|
| 524 |
rows = _load_dataset(ds_dir)
|
| 525 |
if not rows:
|
| 526 |
raise HTTPException(status_code=404, detail="dataset introuvable")
|
| 527 |
|
| 528 |
-
# Embedding de la requête (même provider)
|
| 529 |
if EMB_PROVIDER == "dummy":
|
| 530 |
q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :]
|
| 531 |
elif EMB_PROVIDER == "st":
|
|
@@ -552,9 +509,8 @@ def search(req: SearchRequest):
|
|
| 552 |
out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)})
|
| 553 |
return {"results": out}
|
| 554 |
|
| 555 |
-
|
| 556 |
# --------------------------------------------------------------------------- #
|
| 557 |
-
# ARTIFACTS
|
| 558 |
# --------------------------------------------------------------------------- #
|
| 559 |
@fastapi_app.get("/artifacts/{project_id}/dataset")
|
| 560 |
def download_dataset(project_id: str):
|
|
@@ -565,7 +521,6 @@ def download_dataset(project_id: str):
|
|
| 565 |
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_dataset.tgz"'}
|
| 566 |
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
|
| 567 |
|
| 568 |
-
|
| 569 |
@fastapi_app.get("/artifacts/{project_id}/faiss")
|
| 570 |
def download_faiss(project_id: str):
|
| 571 |
_, _, fx_dir = _proj_dirs(project_id)
|
|
@@ -575,35 +530,30 @@ def download_faiss(project_id: str):
|
|
| 575 |
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_faiss.tgz"'}
|
| 576 |
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
|
| 577 |
|
| 578 |
-
|
| 579 |
# --------------------------------------------------------------------------- #
|
| 580 |
-
# GRADIO UI (facultatif –
|
| 581 |
# --------------------------------------------------------------------------- #
|
| 582 |
def _ui_index(project_id: str, sample_text: str):
|
| 583 |
files = [{"path": "sample.txt", "text": sample_text}]
|
| 584 |
try:
|
| 585 |
req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files])
|
| 586 |
except Exception as e:
|
| 587 |
-
return f"❌
|
| 588 |
try:
|
| 589 |
res = index(req)
|
| 590 |
return f"✅ Job lancé : {res['job_id']}"
|
| 591 |
except Exception as e:
|
| 592 |
-
return f"❌ Erreur
|
| 593 |
-
|
| 594 |
|
| 595 |
def _ui_search(project_id: str, query: str, k: int):
|
| 596 |
try:
|
| 597 |
res = search(SearchRequest(project_id=project_id, query=query, k=int(k)))
|
| 598 |
return json.dumps(res, ensure_ascii=False, indent=2)
|
| 599 |
except Exception as e:
|
| 600 |
-
return f"❌ Erreur
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
import gradio as gr
|
| 604 |
|
| 605 |
with gr.Blocks(title="Remote Indexer (Async – Optimisé)", analytics_enabled=False) as ui:
|
| 606 |
-
gr.Markdown("## Remote Indexer
|
| 607 |
with gr.Row():
|
| 608 |
pid = gr.Textbox(label="Project ID", value="DEMO")
|
| 609 |
txt = gr.Textbox(label="Texte d’exemple", lines=4, value="Alpha bravo charlie delta echo foxtrot.")
|
|
@@ -618,15 +568,14 @@ with gr.Blocks(title="Remote Indexer (Async – Optimisé)", analytics_enabled=F
|
|
| 618 |
out_q = gr.Code(label="Résultats")
|
| 619 |
btn_q.click(_ui_search, inputs=[pid, q, k], outputs=[out_q])
|
| 620 |
|
|
|
|
| 621 |
fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")
|
| 622 |
|
| 623 |
-
|
| 624 |
# --------------------------------------------------------------------------- #
|
| 625 |
# MAIN
|
| 626 |
# --------------------------------------------------------------------------- #
|
| 627 |
if __name__ == "__main__":
|
| 628 |
import uvicorn
|
| 629 |
|
| 630 |
-
|
| 631 |
-
LOG.info("Démarrage Uvicorn – port %s – UI à /ui", PORT)
|
| 632 |
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
+
FastAPI + Gradio : service d’indexation asynchrone avec FAISS.
|
| 4 |
+
Ce fichier a été corrigé pour :
|
| 5 |
+
|
| 6 |
+
* importer correctement `JobState`
|
| 7 |
+
* garantir que toutes les dépendances (typing, pathlib…) sont disponibles
|
| 8 |
+
* exposer les routes attendues par le client
|
| 9 |
+
* garder la même logique que la version originale.
|
| 10 |
"""
|
| 11 |
|
| 12 |
from __future__ import annotations
|
| 13 |
+
|
| 14 |
import os
|
| 15 |
import io
|
| 16 |
import json
|
| 17 |
import time
|
|
|
|
|
|
|
| 18 |
import hashlib
|
| 19 |
+
import logging
|
| 20 |
+
import tarfile
|
| 21 |
+
from pathlib import Path
|
| 22 |
from typing import List, Dict, Any, Tuple, Optional
|
| 23 |
|
| 24 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 25 |
+
|
| 26 |
import numpy as np
|
| 27 |
import faiss
|
| 28 |
from fastapi import FastAPI, HTTPException
|
|
|
|
| 30 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 31 |
from pydantic import BaseModel
|
| 32 |
|
| 33 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# --------------------------------------------------------------------------- #
|
| 36 |
# LOGGING
|
| 37 |
# --------------------------------------------------------------------------- #
|
| 38 |
+
LOG = logging.getLogger("remote-indexer-async")
|
| 39 |
if not LOG.handlers:
|
| 40 |
h = logging.StreamHandler()
|
| 41 |
+
h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
|
| 42 |
LOG.addHandler(h)
|
| 43 |
LOG.setLevel(logging.INFO)
|
| 44 |
|
| 45 |
+
DBG = logging.getLogger("remote-indexer-async.debug")
|
| 46 |
+
if not DBG.handlers:
|
| 47 |
+
hd = logging.StreamHandler()
|
| 48 |
+
hd.setFormatter(logging.Formatter("[DEBUG] %(asctime)s - %(message)s"))
|
| 49 |
+
DBG.addHandler(hd)
|
| 50 |
+
DBG.setLevel(logging.DEBUG)
|
| 51 |
+
|
| 52 |
# --------------------------------------------------------------------------- #
|
| 53 |
+
# CONFIGURATION (variables d’environnement)
|
| 54 |
# --------------------------------------------------------------------------- #
|
| 55 |
+
PORT = int(os.getenv("PORT", "7860"))
|
| 56 |
+
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data")
|
| 57 |
+
os.makedirs(DATA_ROOT, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower()
|
| 60 |
+
EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-mpnet-base-v2").strip()
|
| 61 |
+
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
|
| 62 |
+
EMB_DIM = int(os.getenv("EMB_DIM", "64")) # dimension réduite (optimisation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
MAX_WORKERS = int(os.getenv("MAX_WORKERS", "1"))
|
| 65 |
|
| 66 |
+
# --------------------------------------------------------------------------- #
|
| 67 |
+
# CACHE DIRECTORIES (évite PermissionError)
|
| 68 |
+
# --------------------------------------------------------------------------- #
|
| 69 |
+
def _setup_cache_dirs() -> Dict[str, str]:
|
| 70 |
+
os.environ.setdefault("HOME", "/home/user")
|
| 71 |
+
CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/")
|
| 72 |
+
paths = {
|
| 73 |
+
"root": CACHE_ROOT,
|
| 74 |
+
"hf_home": f"{CACHE_ROOT}/huggingface",
|
| 75 |
+
"hf_hub": f"{CACHE_ROOT}/huggingface/hub",
|
| 76 |
+
"hf_tf": f"{CACHE_ROOT}/huggingface/transformers",
|
| 77 |
+
"torch": f"{CACHE_ROOT}/torch",
|
| 78 |
+
"st": f"{CACHE_ROOT}/sentence-transformers",
|
| 79 |
+
"mpl": f"{CACHE_ROOT}/matplotlib",
|
| 80 |
+
}
|
| 81 |
+
for p in paths.values():
|
| 82 |
+
try:
|
| 83 |
+
os.makedirs(p, exist_ok=True)
|
| 84 |
+
except Exception as e:
|
| 85 |
+
LOG.warning("Impossible de créer %s : %s", p, e)
|
| 86 |
|
| 87 |
+
os.environ["HF_HOME"] = paths["hf_home"]
|
| 88 |
+
os.environ["HF_HUB_CACHE"] = paths["hf_hub"]
|
| 89 |
+
os.environ["TRANSFORMERS_CACHE"] = paths["hf_tf"]
|
| 90 |
+
os.environ["TORCH_HOME"] = paths["torch"]
|
| 91 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = paths["st"]
|
| 92 |
+
os.environ["MPLCONFIGDIR"] = paths["mpl"]
|
| 93 |
+
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
|
| 94 |
+
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 95 |
+
|
| 96 |
+
LOG.info("Caches configurés : %s", json.dumps(paths, indent=2))
|
| 97 |
+
return paths
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
CACHE_PATHS = _setup_cache_dirs()
|
| 101 |
+
|
| 102 |
+
# --------------------------------------------------------------------------- #
|
| 103 |
+
# IMPORT DE LA CLASSE DE STATE (c’est ce qui manquait)
|
| 104 |
+
# --------------------------------------------------------------------------- #
|
| 105 |
+
# La classe `JobState` se trouve dans `app/core/index_state.py`.
|
| 106 |
+
# On l’importe ici afin qu’elle soit disponible dans tout le module.
|
| 107 |
+
from app.core.index_state import JobState # <-- IMPORT CORRIGÉ
|
| 108 |
|
| 109 |
# --------------------------------------------------------------------------- #
|
| 110 |
+
# GLOBALS
|
| 111 |
# --------------------------------------------------------------------------- #
|
| 112 |
+
JOBS: Dict[str, JobState] = {}
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
def _now() -> str:
|
| 115 |
+
return time.strftime("%H:%M:%S")
|
| 116 |
|
| 117 |
+
def _proj_dirs(project_id: str) -> Tuple[str, str, str]:
|
| 118 |
+
base = os.path.join(DATA_ROOT, project_id)
|
| 119 |
+
ds_dir = os.path.join(base, "dataset")
|
| 120 |
+
fx_dir = os.path.join(base, "faiss")
|
| 121 |
+
os.makedirs(ds_dir, exist_ok=True)
|
| 122 |
+
os.makedirs(fx_dir, exist_ok=True)
|
| 123 |
+
return base, ds_dir, fx_dir
|
| 124 |
|
| 125 |
+
def _add_msg(st: JobState, msg: str) -> None:
|
| 126 |
+
st.messages.append(f"[{_now()}] {msg}")
|
| 127 |
+
LOG.info("[%s] %s", st.job_id, msg)
|
| 128 |
+
DBG.debug("[%s] %s", st.job_id, msg)
|
| 129 |
|
| 130 |
+
def _set_stage(st: JobState, stage: str) -> None:
|
| 131 |
+
st.stage = stage
|
| 132 |
+
_add_msg(st, f"stage={stage}")
|
| 133 |
|
| 134 |
+
# --------------------------------------------------------------------------- #
|
| 135 |
+
# UTILITAIRES (chunking, normalisation, etc.)
|
| 136 |
+
# --------------------------------------------------------------------------- #
|
| 137 |
+
def _chunk_text(text: str, size: int = 200, overlap: int = 20) -> List[str]:
|
| 138 |
+
text = (text or "").replace("\r\n", "\n")
|
| 139 |
+
tokens = list(text)
|
| 140 |
+
if size <= 0:
|
| 141 |
+
return [text] if text else []
|
| 142 |
+
if overlap < 0:
|
| 143 |
+
overlap = 0
|
| 144 |
+
chunks = []
|
| 145 |
+
i = 0
|
| 146 |
+
while i < len(tokens):
|
| 147 |
+
j = min(i + size, len(tokens))
|
| 148 |
+
chunk = "".join(tokens[i:j]).strip()
|
| 149 |
+
if chunk:
|
| 150 |
+
chunks.append(chunk)
|
| 151 |
+
if j == len(tokens):
|
| 152 |
+
break
|
| 153 |
+
i = j - overlap if (j - overlap) > i else j
|
| 154 |
+
return chunks
|
| 155 |
+
|
| 156 |
+
def _l2_normalize(x: np.ndarray) -> np.ndarray:
|
| 157 |
+
n = np.linalg.norm(x, axis=1, keepdims=True) + 1e-12
|
| 158 |
+
return x / n
|
| 159 |
|
| 160 |
# --------------------------------------------------------------------------- #
|
| 161 |
# EMBEDDING PROVIDERS
|
| 162 |
# --------------------------------------------------------------------------- #
|
| 163 |
+
_ST_MODEL = None
|
| 164 |
+
_HF_TOKENIZER = None
|
| 165 |
+
_HF_MODEL = None
|
|
|
|
| 166 |
|
| 167 |
def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
|
|
|
|
| 168 |
vecs = np.zeros((len(texts), dim), dtype="float32")
|
| 169 |
for i, t in enumerate(texts):
|
| 170 |
h = hashlib.sha1((t or "").encode("utf-8")).digest()
|
|
|
|
| 173 |
vecs[i] = v / (np.linalg.norm(v) + 1e-9)
|
| 174 |
return vecs
|
| 175 |
|
|
|
|
| 176 |
def _get_st_model():
|
| 177 |
global _ST_MODEL
|
| 178 |
if _ST_MODEL is None:
|
| 179 |
from sentence_transformers import SentenceTransformer
|
| 180 |
+
_ST_MODEL = SentenceTransformer(EMB_MODEL, cache_folder=CACHE_PATHS["st"])
|
| 181 |
+
LOG.info("[st] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["st"])
|
| 182 |
return _ST_MODEL
|
| 183 |
|
|
|
|
| 184 |
def _emb_st(texts: List[str]) -> np.ndarray:
|
| 185 |
model = _get_st_model()
|
| 186 |
vecs = model.encode(
|
|
|
|
| 192 |
).astype("float32")
|
| 193 |
return vecs
|
| 194 |
|
|
|
|
| 195 |
def _get_hf_model():
|
| 196 |
global _HF_TOKENIZER, _HF_MODEL
|
| 197 |
if _HF_MODEL is None or _HF_TOKENIZER is None:
|
| 198 |
from transformers import AutoTokenizer, AutoModel
|
| 199 |
+
_HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
|
| 200 |
+
_HF_MODEL = AutoModel.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
|
| 201 |
_HF_MODEL.eval()
|
| 202 |
+
LOG.info("[hf] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["hf_tf"])
|
| 203 |
return _HF_TOKENIZER, _HF_MODEL
|
| 204 |
|
|
|
|
| 205 |
def _mean_pool(last_hidden_state: np.ndarray, attention_mask: np.ndarray) -> np.ndarray:
|
| 206 |
mask = attention_mask[..., None].astype(last_hidden_state.dtype)
|
| 207 |
summed = (last_hidden_state * mask).sum(axis=1)
|
| 208 |
counts = mask.sum(axis=1).clip(min=1e-9)
|
| 209 |
return summed / counts
|
| 210 |
|
|
|
|
| 211 |
def _emb_hf(texts: List[str]) -> np.ndarray:
|
| 212 |
import torch
|
| 213 |
tok, mod = _get_hf_model()
|
|
|
|
| 223 |
all_vecs.append(pooled.astype("float32"))
|
| 224 |
return np.concatenate(all_vecs, axis=0)
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
# --------------------------------------------------------------------------- #
|
| 227 |
# DATASET / FAISS I/O
|
| 228 |
# --------------------------------------------------------------------------- #
|
| 229 |
+
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]], store_text: bool = True) -> None:
|
|
|
|
| 230 |
os.makedirs(ds_dir, exist_ok=True)
|
| 231 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 232 |
with open(data_path, "w", encoding="utf-8") as f:
|
|
|
|
| 238 |
with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f:
|
| 239 |
json.dump(meta, f, ensure_ascii=False, indent=2)
|
| 240 |
|
|
|
|
| 241 |
def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
|
| 242 |
data_path = os.path.join(ds_dir, "data.jsonl")
|
| 243 |
if not os.path.isfile(data_path):
|
|
|
|
| 251 |
continue
|
| 252 |
return out
|
| 253 |
|
|
|
|
| 254 |
def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any]) -> None:
|
|
|
|
| 255 |
os.makedirs(fx_dir, exist_ok=True)
|
| 256 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 257 |
|
| 258 |
+
# ------------------------------------------------------------------- #
|
| 259 |
+
# Index quantisé (IVF‑PQ) – optimisation mémoire / disque
|
| 260 |
+
# ------------------------------------------------------------------- #
|
| 261 |
+
quantizer = faiss.IndexFlatIP(xb.shape[1]) # inner‑product (cosine si normalisé)
|
| 262 |
+
index = faiss.IndexIVFPQ(quantizer, xb.shape[1], 100, 8, 8) # nlist=100, m=8, nbits=8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
# entraînement sur un sous‑échantillon (max 10 k vecteurs)
|
| 265 |
+
rng = np.random.default_rng(0)
|
| 266 |
+
train = xb[rng.choice(xb.shape[0], min(10_000, xb.shape[0]), replace=False]
|
| 267 |
+
index.train(train)
|
| 268 |
+
|
| 269 |
+
index.add(xb)
|
| 270 |
faiss.write_index(index, idx_path)
|
| 271 |
|
| 272 |
+
meta.update({"index_type": "IVF_PQ", "nlist": 100, "m": 8, "nbits": 8})
|
| 273 |
with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f:
|
| 274 |
json.dump(meta, f, ensure_ascii=False, indent=2)
|
| 275 |
|
|
|
|
| 276 |
def _load_faiss(fx_dir: str) -> faiss.Index:
|
|
|
|
| 277 |
idx_path = os.path.join(fx_dir, "emb.faiss")
|
| 278 |
if not os.path.isfile(idx_path):
|
| 279 |
raise FileNotFoundError(f"FAISS index introuvable : {idx_path}")
|
| 280 |
+
# mmap → l’index reste sur disque, la RAM n’est utilisée que pour les requêtes
|
| 281 |
return faiss.read_index(idx_path, faiss.IO_FLAG_MMAP)
|
| 282 |
|
|
|
|
| 283 |
def _tar_dir_to_bytes(dir_path: str) -> bytes:
|
|
|
|
| 284 |
bio = io.BytesIO()
|
| 285 |
with tarfile.open(fileobj=bio, mode="w:gz", compresslevel=9) as tar:
|
| 286 |
tar.add(dir_path, arcname=os.path.basename(dir_path))
|
| 287 |
bio.seek(0)
|
| 288 |
return bio.read()
|
| 289 |
|
|
|
|
| 290 |
# --------------------------------------------------------------------------- #
|
| 291 |
+
# THREAD‑POOL (asynchrone)
|
| 292 |
# --------------------------------------------------------------------------- #
|
| 293 |
+
EXECUTOR = ThreadPoolExecutor(max_workers=max(1, MAX_WORKERS))
|
|
|
|
|
|
|
|
|
|
| 294 |
LOG.info("ThreadPoolExecutor initialisé : max_workers=%s", MAX_WORKERS)
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
def _do_index_job(
|
| 297 |
+
st: JobState,
|
| 298 |
files: List[Dict[str, str]],
|
| 299 |
chunk_size: int,
|
| 300 |
overlap: int,
|
|
|
|
| 305 |
Pipeline complet :
|
| 306 |
1️⃣ Chunking
|
| 307 |
2️⃣ Embedding (dummy / st / hf)
|
| 308 |
+
3️⃣ Réduction de dimension (PCA) si besoin
|
| 309 |
+
4️⃣ Sauvegarde du dataset (texte optionnel)
|
| 310 |
5️⃣ Index FAISS quantisé + mmap
|
| 311 |
"""
|
| 312 |
try:
|
| 313 |
base, ds_dir, fx_dir = _proj_dirs(st.project_id)
|
| 314 |
|
| 315 |
+
# ------------------- 1️⃣ Chunking -------------------
|
| 316 |
+
_set_stage(st, "chunking")
|
|
|
|
| 317 |
rows: List[Dict[str, Any]] = []
|
| 318 |
st.total_files = len(files)
|
| 319 |
|
|
|
|
| 325 |
rows.append({"path": path, "text": ck, "chunk_id": i})
|
| 326 |
|
| 327 |
st.total_chunks = len(rows)
|
| 328 |
+
_add_msg(st, f"Total chunks = {st.total_chunks}")
|
| 329 |
|
| 330 |
+
# ------------------- 2️⃣ Embedding -------------------
|
| 331 |
+
_set_stage(st, "embedding")
|
|
|
|
| 332 |
texts = [r["text"] for r in rows]
|
| 333 |
+
|
| 334 |
if EMB_PROVIDER == "dummy":
|
| 335 |
xb = _emb_dummy(texts, dim=EMB_DIM)
|
| 336 |
elif EMB_PROVIDER == "st":
|
|
|
|
| 338 |
else:
|
| 339 |
xb = _emb_hf(texts)
|
| 340 |
|
| 341 |
+
# ------------------- 3️⃣ Réduction de dimension (PCA) -------------------
|
|
|
|
|
|
|
| 342 |
if xb.shape[1] != EMB_DIM:
|
| 343 |
+
from sklearn.decomposition import PCA
|
| 344 |
+
pca = PCA(n_components=EMB_DIM, random_state=0)
|
| 345 |
+
xb = pca.fit_transform(xb).astype("float32")
|
| 346 |
+
LOG.info("Réduction PCA appliquée : %d → %d dimensions", xb.shape[1], EMB_DIM)
|
| 347 |
|
| 348 |
st.embedded = xb.shape[0]
|
| 349 |
+
_add_msg(st, f"Embeddings générés : {st.embedded}")
|
| 350 |
|
| 351 |
+
# ------------------- 4️⃣ Sauvegarde dataset -------------------
|
|
|
|
|
|
|
| 352 |
_save_dataset(ds_dir, rows, store_text=store_text)
|
| 353 |
+
_add_msg(st, f"Dataset sauvegardé dans {ds_dir}")
|
| 354 |
|
| 355 |
+
# ------------------- 5️⃣ Index FAISS -------------------
|
| 356 |
+
_set_stage(st, "indexing")
|
|
|
|
| 357 |
meta = {
|
| 358 |
"dim": int(xb.shape[1]),
|
| 359 |
"count": int(xb.shape[0]),
|
|
|
|
| 362 |
}
|
| 363 |
_save_faiss(fx_dir, xb, meta)
|
| 364 |
st.indexed = int(xb.shape[0])
|
| 365 |
+
_add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
|
| 366 |
|
| 367 |
+
_set_stage(st, "done")
|
|
|
|
|
|
|
|
|
|
| 368 |
st.finished_at = time.time()
|
| 369 |
except Exception as e:
|
| 370 |
LOG.exception("Job %s échoué", st.job_id)
|
| 371 |
st.errors.append(str(e))
|
| 372 |
+
_add_msg(st, f"❌ Exception : {e}")
|
| 373 |
st.stage = "failed"
|
| 374 |
st.finished_at = time.time()
|
| 375 |
|
|
|
|
| 400 |
st.stage = "queued"
|
| 401 |
return job_id
|
| 402 |
|
|
|
|
| 403 |
# --------------------------------------------------------------------------- #
|
| 404 |
# FASTAPI
|
| 405 |
# --------------------------------------------------------------------------- #
|
|
|
|
| 412 |
allow_headers=["*"],
|
| 413 |
)
|
| 414 |
|
|
|
|
| 415 |
class FileItem(BaseModel):
|
| 416 |
path: str
|
| 417 |
text: str
|
| 418 |
|
|
|
|
| 419 |
class IndexRequest(BaseModel):
|
| 420 |
project_id: str
|
| 421 |
files: List[FileItem]
|
| 422 |
chunk_size: int = 200
|
| 423 |
overlap: int = 20
|
| 424 |
batch_size: int = 32
|
| 425 |
+
store_text: bool = True # on peut désactiver via le payload ou env
|
|
|
|
| 426 |
|
| 427 |
@fastapi_app.get("/health")
|
| 428 |
def health():
|
|
|
|
| 433 |
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
|
| 434 |
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
|
| 435 |
"workers": MAX_WORKERS,
|
| 436 |
+
"data_root": DATA_ROOT,
|
|
|
|
| 437 |
"emb_dim": EMB_DIM,
|
| 438 |
}
|
| 439 |
|
|
|
|
| 440 |
@fastapi_app.post("/index")
|
| 441 |
def index(req: IndexRequest):
|
| 442 |
+
"""
|
| 443 |
+
Lancement asynchrone : renvoie immédiatement un `job_id`.
|
| 444 |
+
"""
|
| 445 |
try:
|
| 446 |
files = [fi.model_dump() for fi in req.files]
|
| 447 |
job_id = _submit_job(
|
|
|
|
| 457 |
LOG.exception("Erreur soumission index")
|
| 458 |
raise HTTPException(status_code=500, detail=str(e))
|
| 459 |
|
|
|
|
| 460 |
@fastapi_app.get("/status/{job_id}")
|
| 461 |
def status(job_id: str):
|
| 462 |
st = JOBS.get(job_id)
|
|
|
|
| 464 |
raise HTTPException(status_code=404, detail="job inconnu")
|
| 465 |
return JSONResponse(st.model_dump())
|
| 466 |
|
|
|
|
| 467 |
class SearchRequest(BaseModel):
|
| 468 |
project_id: str
|
| 469 |
query: str
|
| 470 |
k: int = 5
|
| 471 |
|
|
|
|
| 472 |
@fastapi_app.post("/search")
|
| 473 |
def search(req: SearchRequest):
|
| 474 |
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
|
| 475 |
|
| 476 |
+
# Vérifier que l’index existe
|
| 477 |
+
if not (os.path.isfile(os.path.join(fx_dir, "emb.faiss")) and
|
| 478 |
+
os.path.isfile(os.path.join(ds_dir, "data.jsonl"))):
|
| 479 |
raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)")
|
| 480 |
|
| 481 |
rows = _load_dataset(ds_dir)
|
| 482 |
if not rows:
|
| 483 |
raise HTTPException(status_code=404, detail="dataset introuvable")
|
| 484 |
|
| 485 |
+
# Embedding de la requête (même provider que l’index)
|
| 486 |
if EMB_PROVIDER == "dummy":
|
| 487 |
q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :]
|
| 488 |
elif EMB_PROVIDER == "st":
|
|
|
|
| 509 |
out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)})
|
| 510 |
return {"results": out}
|
| 511 |
|
|
|
|
| 512 |
# --------------------------------------------------------------------------- #
|
| 513 |
+
# EXPORT ARTIFACTS (gzip)
|
| 514 |
# --------------------------------------------------------------------------- #
|
| 515 |
@fastapi_app.get("/artifacts/{project_id}/dataset")
|
| 516 |
def download_dataset(project_id: str):
|
|
|
|
| 521 |
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_dataset.tgz"'}
|
| 522 |
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
|
| 523 |
|
|
|
|
| 524 |
@fastapi_app.get("/artifacts/{project_id}/faiss")
|
| 525 |
def download_faiss(project_id: str):
|
| 526 |
_, _, fx_dir = _proj_dirs(project_id)
|
|
|
|
| 530 |
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_faiss.tgz"'}
|
| 531 |
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
|
| 532 |
|
|
|
|
| 533 |
# --------------------------------------------------------------------------- #
|
| 534 |
+
# GRADIO UI (facultatif – test rapide)
|
| 535 |
# --------------------------------------------------------------------------- #
|
| 536 |
def _ui_index(project_id: str, sample_text: str):
|
| 537 |
files = [{"path": "sample.txt", "text": sample_text}]
|
| 538 |
try:
|
| 539 |
req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files])
|
| 540 |
except Exception as e:
|
| 541 |
+
return f"❌ Validation : {e}"
|
| 542 |
try:
|
| 543 |
res = index(req)
|
| 544 |
return f"✅ Job lancé : {res['job_id']}"
|
| 545 |
except Exception as e:
|
| 546 |
+
return f"❌ Erreur : {e}"
|
|
|
|
| 547 |
|
| 548 |
def _ui_search(project_id: str, query: str, k: int):
|
| 549 |
try:
|
| 550 |
res = search(SearchRequest(project_id=project_id, query=query, k=int(k)))
|
| 551 |
return json.dumps(res, ensure_ascii=False, indent=2)
|
| 552 |
except Exception as e:
|
| 553 |
+
return f"❌ Erreur : {e}"
|
|
|
|
|
|
|
|
|
|
| 554 |
|
| 555 |
with gr.Blocks(title="Remote Indexer (Async – Optimisé)", analytics_enabled=False) as ui:
|
| 556 |
+
gr.Markdown("## Remote Indexer — Async (FAISS quantisé, mmap, texte optionnel)")
|
| 557 |
with gr.Row():
|
| 558 |
pid = gr.Textbox(label="Project ID", value="DEMO")
|
| 559 |
txt = gr.Textbox(label="Texte d’exemple", lines=4, value="Alpha bravo charlie delta echo foxtrot.")
|
|
|
|
| 568 |
out_q = gr.Code(label="Résultats")
|
| 569 |
btn_q.click(_ui_search, inputs=[pid, q, k], outputs=[out_q])
|
| 570 |
|
| 571 |
+
# Monte l’UI Gradio sur le même serveur FastAPI
|
| 572 |
fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")
|
| 573 |
|
|
|
|
| 574 |
# --------------------------------------------------------------------------- #
|
| 575 |
# MAIN
|
| 576 |
# --------------------------------------------------------------------------- #
|
| 577 |
if __name__ == "__main__":
|
| 578 |
import uvicorn
|
| 579 |
|
| 580 |
+
LOG.info("Démarrage Uvicorn – port %s – UI disponible à /ui", PORT)
|
|
|
|
| 581 |
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)
|