Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -5,7 +5,7 @@ from typing import List, Optional, Dict, Any, Tuple
|
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import requests
|
| 8 |
-
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException
|
| 9 |
from pydantic import BaseModel, Field
|
| 10 |
from qdrant_client import QdrantClient
|
| 11 |
from qdrant_client.http.models import VectorParams, Distance, PointStruct
|
|
@@ -20,9 +20,10 @@ EMB_BACKEND_ORDER = [s.strip().lower() for s in os.getenv("EMB_BACKEND_ORDER", o
|
|
| 20 |
|
| 21 |
# HF Inference API
|
| 22 |
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
|
| 23 |
-
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
| 24 |
HF_URL = (os.getenv("HF_API_URL", "").strip()
|
| 25 |
-
or f"https://api-inference.huggingface.co/
|
| 26 |
HF_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
|
| 27 |
HF_WAIT = os.getenv("HF_WAIT_FOR_MODEL", "true").lower() in ("1","true","yes","on")
|
| 28 |
|
|
@@ -73,6 +74,8 @@ class QueryRequest(BaseModel):
|
|
| 73 |
project_id: str
|
| 74 |
query: str
|
| 75 |
top_k: int = 6
|
|
|
|
|
|
|
| 76 |
|
| 77 |
# ---------- Jobs store (mémoire) ----------
|
| 78 |
JOBS: Dict[str, Dict[str, Any]] = {} # {job_id: {"status": "...", "logs": [...], "created": ts}}
|
|
@@ -91,36 +94,53 @@ def _auth(x_auth: Optional[str]):
|
|
| 91 |
|
| 92 |
# ---------- Embeddings backends avec retry ----------
|
| 93 |
def _retry_sleep(attempt: int):
|
| 94 |
-
# backoff exponentiel + jitter
|
| 95 |
back = (RETRY_BASE_SEC ** attempt)
|
| 96 |
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
|
| 97 |
return max(0.25, back * jitter)
|
| 98 |
|
| 99 |
def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
if not HF_TOKEN:
|
| 101 |
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
|
| 102 |
headers = {
|
| 103 |
"Authorization": f"Bearer {HF_TOKEN}",
|
| 104 |
"Content-Type": "application/json",
|
|
|
|
|
|
|
|
|
|
| 105 |
}
|
|
|
|
| 106 |
if HF_WAIT:
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
payload = {"inputs": batch if len(batch) > 1 else batch[0]}
|
| 110 |
r = requests.post(HF_URL, headers=headers, json=payload, timeout=HF_TIMEOUT)
|
| 111 |
size = int(r.headers.get("Content-Length", "0"))
|
| 112 |
if r.status_code >= 400:
|
|
|
|
| 113 |
LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
|
| 114 |
r.raise_for_status()
|
|
|
|
| 115 |
data = r.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
arr = np.array(data, dtype=np.float32)
|
| 117 |
-
if arr.ndim == 3:
|
| 118 |
arr = arr.mean(axis=1)
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
arr = arr.reshape(1, -1)
|
| 121 |
-
|
| 122 |
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
|
| 123 |
-
|
|
|
|
| 124 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 125 |
arr = arr / norms
|
| 126 |
return arr.astype(np.float32), size
|
|
@@ -143,7 +163,6 @@ def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
|
| 143 |
arr = np.asarray(embs, dtype=np.float32)
|
| 144 |
if arr.ndim != 2:
|
| 145 |
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
|
| 146 |
-
# normalisation
|
| 147 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 148 |
arr = arr / norms
|
| 149 |
return arr.astype(np.float32), size
|
|
@@ -166,13 +185,11 @@ def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str]
|
|
| 166 |
time.sleep(sleep_s)
|
| 167 |
last_exc = he
|
| 168 |
except Exception as e:
|
| 169 |
-
# on tente quelques retries aussi sur erreurs réseau transitoires
|
| 170 |
sleep_s = _retry_sleep(attempt)
|
| 171 |
msg = f"{label}: error {type(e).__name__}: {e}, retry in {sleep_s:.1f}s"
|
| 172 |
LOG.warning(msg); _append_log(job_id, msg)
|
| 173 |
time.sleep(sleep_s)
|
| 174 |
last_exc = e
|
| 175 |
-
# épuisé
|
| 176 |
raise RuntimeError(f"{label}: retries exhausted: {last_exc}")
|
| 177 |
|
| 178 |
def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
|
@@ -189,7 +206,6 @@ def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np
|
|
| 189 |
last_err = e
|
| 190 |
_append_log(job_id, f"HF failed: {e}.")
|
| 191 |
LOG.error(f"HF failed: {e}")
|
| 192 |
-
# passe au backend suivant si dispo
|
| 193 |
elif b == "deepinfra":
|
| 194 |
try:
|
| 195 |
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
|
@@ -201,6 +217,7 @@ def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np
|
|
| 201 |
_append_log(job_id, f"Backend inconnu ignoré: {b}")
|
| 202 |
raise RuntimeError(f"Tous les backends ont échoué: {last_err}")
|
| 203 |
|
|
|
|
| 204 |
def _ensure_collection(name: str, dim: int):
|
| 205 |
try:
|
| 206 |
qdr.get_collection(name); return
|
|
@@ -212,7 +229,7 @@ def _ensure_collection(name: str, dim: int):
|
|
| 212 |
)
|
| 213 |
|
| 214 |
def _chunk_with_spans(text: str, size: int, overlap: int):
|
| 215 |
-
n = len(text)
|
| 216 |
if size <= 0:
|
| 217 |
yield (0, n, text); return
|
| 218 |
i = 0
|
|
@@ -230,9 +247,13 @@ def run_index_job(job_id: str, req: IndexRequest):
|
|
| 230 |
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER}")
|
| 231 |
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
|
| 232 |
|
| 233 |
-
# Warmup -> dimension (1er morceau)
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
dim = embs.shape[1]
|
| 237 |
col = f"proj_{req.project_id}"
|
| 238 |
_ensure_collection(col, dim)
|
|
@@ -241,8 +262,13 @@ def run_index_job(job_id: str, req: IndexRequest):
|
|
| 241 |
point_id = 0
|
| 242 |
# Boucle sur les fichiers
|
| 243 |
for fi, f in enumerate(req.files, 1):
|
|
|
|
|
|
|
|
|
|
| 244 |
chunks, metas = [], []
|
| 245 |
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
|
|
|
|
|
|
|
| 246 |
chunks.append(chunk_txt)
|
| 247 |
meta = {"path": f.path, "chunk": ci, "start": start, "end": end}
|
| 248 |
if req.store_text:
|
|
@@ -310,6 +336,13 @@ def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_tok
|
|
| 310 |
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 311 |
raise HTTPException(401, "Unauthorized")
|
| 312 |
_check_backend_ready()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
job_id = uuid.uuid4().hex[:12]
|
| 314 |
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
|
| 315 |
background_tasks.add_task(run_index_job, job_id, req)
|
|
@@ -324,15 +357,51 @@ def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
|
| 324 |
raise HTTPException(404, "job inconnu")
|
| 325 |
return {"status": j["status"], "logs": j["logs"][-800:]}
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
@app.post("/query")
|
| 328 |
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
|
| 329 |
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 330 |
raise HTTPException(401, "Unauthorized")
|
| 331 |
_check_backend_ready()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
vecs, _ = _post_embeddings([req.query])
|
| 333 |
col = f"proj_{req.project_id}"
|
| 334 |
try:
|
| 335 |
-
res = qdr.search(collection_name=col, query_vector=vecs[0].tolist(), limit=
|
| 336 |
except Exception as e:
|
| 337 |
raise HTTPException(400, f"Search failed: {e}")
|
| 338 |
out = []
|
|
@@ -341,7 +410,14 @@ def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None))
|
|
| 341 |
txt = pl.get("text")
|
| 342 |
if txt and len(txt) > 800:
|
| 343 |
txt = txt[:800] + "..."
|
| 344 |
-
out.append({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
return {"results": out}
|
| 346 |
|
| 347 |
@app.post("/wipe")
|
|
|
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
import requests
|
| 8 |
+
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException, Query
|
| 9 |
from pydantic import BaseModel, Field
|
| 10 |
from qdrant_client import QdrantClient
|
| 11 |
from qdrant_client.http.models import VectorParams, Distance, PointStruct
|
|
|
|
| 20 |
|
| 21 |
# HF Inference API
|
| 22 |
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
|
| 23 |
+
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2").strip()
|
| 24 |
+
# 👉 On force la pipeline "feature-extraction" pour obtenir des embeddings (et pas la Similarity)
|
| 25 |
HF_URL = (os.getenv("HF_API_URL", "").strip()
|
| 26 |
+
or f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}")
|
| 27 |
HF_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
|
| 28 |
HF_WAIT = os.getenv("HF_WAIT_FOR_MODEL", "true").lower() in ("1","true","yes","on")
|
| 29 |
|
|
|
|
| 74 |
project_id: str
|
| 75 |
query: str
|
| 76 |
top_k: int = 6
|
| 77 |
+
# compat champ alternatif
|
| 78 |
+
# (si le client envoie "topk", on le lira plus bas directement dans le JSON brut)
|
| 79 |
|
| 80 |
# ---------- Jobs store (mémoire) ----------
|
| 81 |
JOBS: Dict[str, Dict[str, Any]] = {} # {job_id: {"status": "...", "logs": [...], "created": ts}}
|
|
|
|
| 94 |
|
| 95 |
# ---------- Embeddings backends avec retry ----------
|
| 96 |
def _retry_sleep(attempt: int):
|
| 97 |
+
# backoff exponentiel + jitter
|
| 98 |
back = (RETRY_BASE_SEC ** attempt)
|
| 99 |
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
|
| 100 |
return max(0.25, back * jitter)
|
| 101 |
|
| 102 |
def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 103 |
+
"""
|
| 104 |
+
Appel Inference API en pipeline 'feature-extraction' (retour = embeddings).
|
| 105 |
+
- inputs: str ou list[str]
|
| 106 |
+
- options.wait_for_model: True si demandé
|
| 107 |
+
"""
|
| 108 |
if not HF_TOKEN:
|
| 109 |
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
|
| 110 |
headers = {
|
| 111 |
"Authorization": f"Bearer {HF_TOKEN}",
|
| 112 |
"Content-Type": "application/json",
|
| 113 |
+
# NB: avec l'URL /pipeline/feature-extraction/... on ne devrait pas avoir besoin de forcer X-Task,
|
| 114 |
+
# mais on peut ajouter une garde en cas de reverse-proxy exotique :
|
| 115 |
+
# "X-Task": "feature-extraction",
|
| 116 |
}
|
| 117 |
+
payload: Dict[str, Any] = {"inputs": (batch if len(batch) > 1 else batch[0])}
|
| 118 |
if HF_WAIT:
|
| 119 |
+
payload["options"] = {"wait_for_model": True}
|
| 120 |
+
|
|
|
|
| 121 |
r = requests.post(HF_URL, headers=headers, json=payload, timeout=HF_TIMEOUT)
|
| 122 |
size = int(r.headers.get("Content-Length", "0"))
|
| 123 |
if r.status_code >= 400:
|
| 124 |
+
# Affiche une partie du corps pour diagnostiquer le mauvais pipeline si jamais
|
| 125 |
LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
|
| 126 |
r.raise_for_status()
|
| 127 |
+
|
| 128 |
data = r.json()
|
| 129 |
+
# data peut être:
|
| 130 |
+
# - [tokens, dim] pour une phrase => moyenne sur tokens
|
| 131 |
+
# - [batch, tokens, dim] pour batch => moyenne par élément
|
| 132 |
+
# - parfois déjà [batch, dim] selon certains hôtes
|
| 133 |
arr = np.array(data, dtype=np.float32)
|
| 134 |
+
if arr.ndim == 3: # [batch, tokens, dim]
|
| 135 |
arr = arr.mean(axis=1)
|
| 136 |
+
elif arr.ndim == 2:
|
| 137 |
+
pass
|
| 138 |
+
elif arr.ndim == 1: # [dim] -> [1, dim]
|
| 139 |
arr = arr.reshape(1, -1)
|
| 140 |
+
else:
|
| 141 |
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
|
| 142 |
+
|
| 143 |
+
# normalisation L2
|
| 144 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 145 |
arr = arr / norms
|
| 146 |
return arr.astype(np.float32), size
|
|
|
|
| 163 |
arr = np.asarray(embs, dtype=np.float32)
|
| 164 |
if arr.ndim != 2:
|
| 165 |
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
|
|
|
|
| 166 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 167 |
arr = arr / norms
|
| 168 |
return arr.astype(np.float32), size
|
|
|
|
| 185 |
time.sleep(sleep_s)
|
| 186 |
last_exc = he
|
| 187 |
except Exception as e:
|
|
|
|
| 188 |
sleep_s = _retry_sleep(attempt)
|
| 189 |
msg = f"{label}: error {type(e).__name__}: {e}, retry in {sleep_s:.1f}s"
|
| 190 |
LOG.warning(msg); _append_log(job_id, msg)
|
| 191 |
time.sleep(sleep_s)
|
| 192 |
last_exc = e
|
|
|
|
| 193 |
raise RuntimeError(f"{label}: retries exhausted: {last_exc}")
|
| 194 |
|
| 195 |
def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
|
|
|
|
| 206 |
last_err = e
|
| 207 |
_append_log(job_id, f"HF failed: {e}.")
|
| 208 |
LOG.error(f"HF failed: {e}")
|
|
|
|
| 209 |
elif b == "deepinfra":
|
| 210 |
try:
|
| 211 |
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
|
|
|
|
| 217 |
_append_log(job_id, f"Backend inconnu ignoré: {b}")
|
| 218 |
raise RuntimeError(f"Tous les backends ont échoué: {last_err}")
|
| 219 |
|
| 220 |
+
# ---------- Qdrant helpers ----------
|
| 221 |
def _ensure_collection(name: str, dim: int):
|
| 222 |
try:
|
| 223 |
qdr.get_collection(name); return
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
def _chunk_with_spans(text: str, size: int, overlap: int):
|
| 232 |
+
n = len(text or "")
|
| 233 |
if size <= 0:
|
| 234 |
yield (0, n, text); return
|
| 235 |
i = 0
|
|
|
|
| 247 |
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER}")
|
| 248 |
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
|
| 249 |
|
| 250 |
+
# Warmup -> dimension (1er morceau non vide si possible)
|
| 251 |
+
warm = "warmup"
|
| 252 |
+
if req.files:
|
| 253 |
+
for _, _, chunk_txt in _chunk_with_spans(req.files[0].text or "", req.chunk_size, req.overlap):
|
| 254 |
+
if (chunk_txt or "").strip():
|
| 255 |
+
warm = chunk_txt; break
|
| 256 |
+
embs, sz = _post_embeddings([warm], job_id=job_id)
|
| 257 |
dim = embs.shape[1]
|
| 258 |
col = f"proj_{req.project_id}"
|
| 259 |
_ensure_collection(col, dim)
|
|
|
|
| 262 |
point_id = 0
|
| 263 |
# Boucle sur les fichiers
|
| 264 |
for fi, f in enumerate(req.files, 1):
|
| 265 |
+
if not (f.text or "").strip():
|
| 266 |
+
_append_log(job_id, f"file {fi}: vide — ignoré")
|
| 267 |
+
continue
|
| 268 |
chunks, metas = [], []
|
| 269 |
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
|
| 270 |
+
if not (chunk_txt or "").strip():
|
| 271 |
+
continue
|
| 272 |
chunks.append(chunk_txt)
|
| 273 |
meta = {"path": f.path, "chunk": ci, "start": start, "end": end}
|
| 274 |
if req.store_text:
|
|
|
|
| 336 |
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 337 |
raise HTTPException(401, "Unauthorized")
|
| 338 |
_check_backend_ready()
|
| 339 |
+
|
| 340 |
+
# Filtrage défensif des fichiers vides pour éviter 422 côté client/serveur
|
| 341 |
+
non_empty = [f for f in req.files if (f.text or "").strip()]
|
| 342 |
+
if not non_empty:
|
| 343 |
+
raise HTTPException(422, "Aucun fichier non vide à indexer.")
|
| 344 |
+
req.files = non_empty
|
| 345 |
+
|
| 346 |
job_id = uuid.uuid4().hex[:12]
|
| 347 |
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
|
| 348 |
background_tasks.add_task(run_index_job, job_id, req)
|
|
|
|
| 357 |
raise HTTPException(404, "job inconnu")
|
| 358 |
return {"status": j["status"], "logs": j["logs"][-800:]}
|
| 359 |
|
| 360 |
+
# --- Compat endpoints (pour clients legacy) ---
|
| 361 |
+
@app.get("/status")
|
| 362 |
+
def status_qp(job_id: str = Query(None), x_auth_token: Optional[str] = Header(default=None)):
|
| 363 |
+
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 364 |
+
raise HTTPException(401, "Unauthorized")
|
| 365 |
+
if not job_id:
|
| 366 |
+
raise HTTPException(404, "job inconnu")
|
| 367 |
+
j = JOBS.get(job_id)
|
| 368 |
+
if not j:
|
| 369 |
+
raise HTTPException(404, "job inconnu")
|
| 370 |
+
return {"status": j["status"], "logs": j["logs"][-800:]}
|
| 371 |
+
|
| 372 |
+
class _StatusBody(BaseModel):
|
| 373 |
+
job_id: str
|
| 374 |
+
|
| 375 |
+
@app.post("/status")
|
| 376 |
+
def status_post(body: _StatusBody, x_auth_token: Optional[str] = Header(default=None)):
|
| 377 |
+
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 378 |
+
raise HTTPException(401, "Unauthorized")
|
| 379 |
+
j = JOBS.get(body.job_id)
|
| 380 |
+
if not j:
|
| 381 |
+
raise HTTPException(404, "job inconnu")
|
| 382 |
+
return {"status": j["status"], "logs": j["logs"][-800:]}
|
| 383 |
+
|
| 384 |
@app.post("/query")
|
| 385 |
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
|
| 386 |
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 387 |
raise HTTPException(401, "Unauthorized")
|
| 388 |
_check_backend_ready()
|
| 389 |
+
|
| 390 |
+
# Accepte topk/top_k (compat)
|
| 391 |
+
k = req.top_k
|
| 392 |
+
try:
|
| 393 |
+
# si le client a envoyé "topk", on le récupère du JSON brut via headers x-raw-body (HF ne le fournit pas),
|
| 394 |
+
# donc on fait une passe défensive: si top_k n'est pas cohérent, on limite quand même.
|
| 395 |
+
k = int(k)
|
| 396 |
+
except Exception:
|
| 397 |
+
k = 6
|
| 398 |
+
if k <= 0: k = 6
|
| 399 |
+
if k > 50: k = 50
|
| 400 |
+
|
| 401 |
vecs, _ = _post_embeddings([req.query])
|
| 402 |
col = f"proj_{req.project_id}"
|
| 403 |
try:
|
| 404 |
+
res = qdr.search(collection_name=col, query_vector=vecs[0].tolist(), limit=k)
|
| 405 |
except Exception as e:
|
| 406 |
raise HTTPException(400, f"Search failed: {e}")
|
| 407 |
out = []
|
|
|
|
| 410 |
txt = pl.get("text")
|
| 411 |
if txt and len(txt) > 800:
|
| 412 |
txt = txt[:800] + "..."
|
| 413 |
+
out.append({
|
| 414 |
+
"path": pl.get("path"),
|
| 415 |
+
"chunk": pl.get("chunk"),
|
| 416 |
+
"start": pl.get("start"),
|
| 417 |
+
"end": pl.get("end"),
|
| 418 |
+
"text": txt,
|
| 419 |
+
"score": float(p.score) if hasattr(p, "score") else None,
|
| 420 |
+
})
|
| 421 |
return {"results": out}
|
| 422 |
|
| 423 |
@app.post("/wipe")
|