Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,30 +1,29 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
-
HF Space - main.py de substitution pour tests Qdrant / indexation minimale
|
| 4 |
|
| 5 |
Endpoints:
|
| 6 |
- GET / → redirige vers UI_PATH (défaut: /ui)
|
| 7 |
- GET /ui (UI_PATH) → UI Gradio
|
| 8 |
- GET /health → healthcheck
|
| 9 |
- GET /api → infos service
|
|
|
|
| 10 |
- POST /wipe?project_id=XXX → supprime la collection Qdrant
|
| 11 |
- POST /index → lance un job d'indexation
|
| 12 |
- GET /status/{job_id} → état + logs du job
|
| 13 |
- GET /collections/{proj}/count → count points dans Qdrant
|
| 14 |
- POST /query → recherche sémantique
|
| 15 |
|
| 16 |
-
ENV
|
| 17 |
- QDRANT_URL, QDRANT_API_KEY (requis pour upsert)
|
| 18 |
- COLLECTION_PREFIX (défaut "proj_")
|
| 19 |
- EMB_PROVIDER ("hf" par défaut, "dummy" sinon)
|
| 20 |
- HF_EMBED_MODEL (défaut "BAAI/bge-m3")
|
| 21 |
- HUGGINGFACEHUB_API_TOKEN (si EMB_PROVIDER=hf)
|
|
|
|
| 22 |
- LOG_LEVEL (défaut DEBUG)
|
| 23 |
- PORT (fourni par HF, défaut 7860)
|
| 24 |
- UI_PATH (défaut "/ui")
|
| 25 |
-
|
| 26 |
-
Dépendances suggérées :
|
| 27 |
-
fastapi>=0.111, uvicorn>=0.30, httpx>=0.27, pydantic>=2.7, gradio>=4.43, numpy>=2.0
|
| 28 |
"""
|
| 29 |
|
| 30 |
from __future__ import annotations
|
|
@@ -63,13 +62,17 @@ EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower() # "hf" | "dummy"
|
|
| 63 |
HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
|
| 64 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
| 65 |
|
|
|
|
|
|
|
| 66 |
UI_PATH = os.getenv("UI_PATH", "/ui") # UI montée ici par défaut
|
| 67 |
|
| 68 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 69 |
LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.")
|
| 70 |
|
| 71 |
if EMB_PROVIDER == "hf" and not HF_TOKEN:
|
| 72 |
-
LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN.
|
|
|
|
|
|
|
| 73 |
|
| 74 |
# ------------------------------------------------------------------------------
|
| 75 |
# Schémas Pydantic
|
|
@@ -154,6 +157,9 @@ def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int,
|
|
| 154 |
i = j
|
| 155 |
return res
|
| 156 |
|
|
|
|
|
|
|
|
|
|
| 157 |
async def ensure_collection(client: httpx.AsyncClient, coll: str, vector_size: int) -> None:
|
| 158 |
"""Crée la collection Qdrant (distance=Cosine), ou la recrée si dim mismatch."""
|
| 159 |
url = f"{QDRANT_URL}/collections/{coll}"
|
|
@@ -214,7 +220,9 @@ async def embed_hf(client: httpx.AsyncClient, texts: List[str], model: str = HF_
|
|
| 214 |
payload = {"inputs": texts, "options": {"wait_for_model": True}}
|
| 215 |
r = await client.post(url, headers=headers, json=payload, timeout=120)
|
| 216 |
if r.status_code != 200:
|
| 217 |
-
|
|
|
|
|
|
|
| 218 |
data = r.json()
|
| 219 |
embeddings: List[List[float]] = []
|
| 220 |
if isinstance(data, list):
|
|
@@ -237,89 +245,107 @@ def embed_dummy(texts: List[str], dim: int = 128) -> List[List[float]]:
|
|
| 237 |
return out
|
| 238 |
|
| 239 |
async def embed_texts(client: httpx.AsyncClient, texts: List[str]) -> List[List[float]]:
|
|
|
|
| 240 |
if EMB_PROVIDER == "hf":
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
return embed_dummy(texts, dim=128)
|
| 243 |
|
| 244 |
# ------------------------------------------------------------------------------
|
| 245 |
-
# Pipeline d'indexation
|
| 246 |
# ------------------------------------------------------------------------------
|
| 247 |
async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
job.stage = "failed"
|
| 274 |
-
job.errors.append(
|
| 275 |
job.finished_at = time.time()
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
async with httpx.AsyncClient(timeout=120) as client:
|
| 279 |
-
# Warmup dim
|
| 280 |
-
warmup_vec = (await embed_texts(client, [records[0]["raw"]]))[0]
|
| 281 |
-
vec_dim = len(warmup_vec)
|
| 282 |
-
job.log(f"Warmup embeddings dim={vec_dim} provider={EMB_PROVIDER}")
|
| 283 |
-
|
| 284 |
-
# Collection Qdrant
|
| 285 |
-
coll = f"{COLLECTION_PREFIX}{req.project_id}"
|
| 286 |
-
await ensure_collection(client, coll, vector_size=vec_dim)
|
| 287 |
-
|
| 288 |
-
job.stage = "upserting"
|
| 289 |
-
batch_points: List[Dict[str, Any]] = []
|
| 290 |
-
|
| 291 |
-
async def flush_batch():
|
| 292 |
-
nonlocal batch_points
|
| 293 |
-
if not batch_points:
|
| 294 |
-
return 0
|
| 295 |
-
added = await qdrant_upsert(client, coll, batch_points)
|
| 296 |
-
job.upserted += added
|
| 297 |
-
job.log(f"+{added} points upsert (total={job.upserted})")
|
| 298 |
-
batch_points = []
|
| 299 |
-
return added
|
| 300 |
-
|
| 301 |
-
EMB_BATCH = max(8, min(64, req.batch_size * 2))
|
| 302 |
-
i = 0
|
| 303 |
-
while i < len(records):
|
| 304 |
-
sub = records[i : i + EMB_BATCH]
|
| 305 |
-
texts = [r["raw"] for r in sub]
|
| 306 |
-
vecs = await embed_texts(client, texts)
|
| 307 |
-
if len(vecs) != len(sub):
|
| 308 |
-
raise HTTPException(status_code=500, detail="Embedding batch size mismatch")
|
| 309 |
-
job.embedded += len(vecs)
|
| 310 |
-
|
| 311 |
-
for r, v in zip(sub, vecs):
|
| 312 |
-
point = {"id": str(uuid.uuid4()), "vector": v, "payload": r["payload"]}
|
| 313 |
-
batch_points.append(point)
|
| 314 |
-
if len(batch_points) >= req.batch_size:
|
| 315 |
-
await flush_batch()
|
| 316 |
-
i += EMB_BATCH
|
| 317 |
-
|
| 318 |
-
await flush_batch()
|
| 319 |
-
|
| 320 |
-
job.stage = "done"
|
| 321 |
-
job.finished_at = time.time()
|
| 322 |
-
job.log("Index job terminé.")
|
| 323 |
|
| 324 |
# ------------------------------------------------------------------------------
|
| 325 |
# FastAPI app + endpoints
|
|
@@ -338,9 +364,29 @@ async def health():
|
|
| 338 |
|
| 339 |
@fastapi_app.get("/api")
|
| 340 |
async def api_info():
|
| 341 |
-
return {
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
@fastapi_app.get("/")
|
| 345 |
async def root_redirect():
|
| 346 |
return RedirectResponse(url=UI_PATH, status_code=307)
|
|
@@ -474,8 +520,9 @@ with gr.Blocks(title="Remote Indexer - Minimal Test", analytics_enabled=False) a
|
|
| 474 |
gr.Markdown("## 🔬 Remote Indexer — Tests sans console\n"
|
| 475 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 476 |
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)\n"
|
| 477 |
-
f"- **
|
| 478 |
-
"
|
|
|
|
| 479 |
with gr.Row():
|
| 480 |
project_tb = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 481 |
jobid_tb = gr.Textbox(label="Job ID (pour Status)", value="", interactive=True)
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
+
HF Space - main.py de substitution pour tests Qdrant / indexation minimale (robuste)
|
| 4 |
|
| 5 |
Endpoints:
|
| 6 |
- GET / → redirige vers UI_PATH (défaut: /ui)
|
| 7 |
- GET /ui (UI_PATH) → UI Gradio
|
| 8 |
- GET /health → healthcheck
|
| 9 |
- GET /api → infos service
|
| 10 |
+
- GET /debug/env → aperçu config (sans secrets)
|
| 11 |
- POST /wipe?project_id=XXX → supprime la collection Qdrant
|
| 12 |
- POST /index → lance un job d'indexation
|
| 13 |
- GET /status/{job_id} → état + logs du job
|
| 14 |
- GET /collections/{proj}/count → count points dans Qdrant
|
| 15 |
- POST /query → recherche sémantique
|
| 16 |
|
| 17 |
+
ENV:
|
| 18 |
- QDRANT_URL, QDRANT_API_KEY (requis pour upsert)
|
| 19 |
- COLLECTION_PREFIX (défaut "proj_")
|
| 20 |
- EMB_PROVIDER ("hf" par défaut, "dummy" sinon)
|
| 21 |
- HF_EMBED_MODEL (défaut "BAAI/bge-m3")
|
| 22 |
- HUGGINGFACEHUB_API_TOKEN (si EMB_PROVIDER=hf)
|
| 23 |
+
- EMB_FALLBACK_TO_DUMMY (true/false) → si vrai, bascule dummy si HF indisponible
|
| 24 |
- LOG_LEVEL (défaut DEBUG)
|
| 25 |
- PORT (fourni par HF, défaut 7860)
|
| 26 |
- UI_PATH (défaut "/ui")
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
|
| 29 |
from __future__ import annotations
|
|
|
|
| 62 |
HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
|
| 63 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
| 64 |
|
| 65 |
+
EMB_FALLBACK_TO_DUMMY = os.getenv("EMB_FALLBACK_TO_DUMMY", "false").lower() in ("1","true","yes","on")
|
| 66 |
+
|
| 67 |
UI_PATH = os.getenv("UI_PATH", "/ui") # UI montée ici par défaut
|
| 68 |
|
| 69 |
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 70 |
LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.")
|
| 71 |
|
| 72 |
if EMB_PROVIDER == "hf" and not HF_TOKEN:
|
| 73 |
+
LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN. "
|
| 74 |
+
"→ soit définis le token, soit mets EMB_PROVIDER=dummy, "
|
| 75 |
+
"soit active EMB_FALLBACK_TO_DUMMY=true.")
|
| 76 |
|
| 77 |
# ------------------------------------------------------------------------------
|
| 78 |
# Schémas Pydantic
|
|
|
|
| 157 |
i = j
|
| 158 |
return res
|
| 159 |
|
| 160 |
+
# ------------------------------------------------------------------------------
|
| 161 |
+
# Qdrant helpers
|
| 162 |
+
# ------------------------------------------------------------------------------
|
| 163 |
async def ensure_collection(client: httpx.AsyncClient, coll: str, vector_size: int) -> None:
|
| 164 |
"""Crée la collection Qdrant (distance=Cosine), ou la recrée si dim mismatch."""
|
| 165 |
url = f"{QDRANT_URL}/collections/{coll}"
|
|
|
|
| 220 |
payload = {"inputs": texts, "options": {"wait_for_model": True}}
|
| 221 |
r = await client.post(url, headers=headers, json=payload, timeout=120)
|
| 222 |
if r.status_code != 200:
|
| 223 |
+
detail = r.text
|
| 224 |
+
LOG.error(f"HF Inference error {r.status_code}: {detail[:400]}")
|
| 225 |
+
raise HTTPException(status_code=502, detail=f"HF Inference error {r.status_code}: {detail}")
|
| 226 |
data = r.json()
|
| 227 |
embeddings: List[List[float]] = []
|
| 228 |
if isinstance(data, list):
|
|
|
|
| 245 |
return out
|
| 246 |
|
| 247 |
async def embed_texts(client: httpx.AsyncClient, texts: List[str]) -> List[List[float]]:
|
| 248 |
+
# Fallback optionnel si HF indisponible
|
| 249 |
if EMB_PROVIDER == "hf":
|
| 250 |
+
try:
|
| 251 |
+
return await embed_hf(client, texts)
|
| 252 |
+
except Exception as e:
|
| 253 |
+
if EMB_FALLBACK_TO_DUMMY:
|
| 254 |
+
LOG.warning(f"Fallback embeddings → dummy (cause: {e})")
|
| 255 |
+
return embed_dummy(texts, dim=128)
|
| 256 |
+
raise
|
| 257 |
return embed_dummy(texts, dim=128)
|
| 258 |
|
| 259 |
# ------------------------------------------------------------------------------
|
| 260 |
+
# Pipeline d'indexation (robuste)
|
| 261 |
# ------------------------------------------------------------------------------
|
| 262 |
async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
| 263 |
+
try:
|
| 264 |
+
job.stage = "embedding"
|
| 265 |
+
job.total_files = len(req.files)
|
| 266 |
+
job.log(
|
| 267 |
+
f"Index start project={req.project_id} files={len(req.files)} "
|
| 268 |
+
f"chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text} "
|
| 269 |
+
f"provider={EMB_PROVIDER} model={HF_EMBED_MODEL}"
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
# Dédup global par hash du texte de fichier
|
| 273 |
+
file_hashes = [hash8(f.text) for f in req.files]
|
| 274 |
+
uniq = len(set(file_hashes))
|
| 275 |
+
if uniq != len(file_hashes):
|
| 276 |
+
job.log(f"Attention: {len(file_hashes)-uniq} fichier(s) ont un texte identique (hash dupliqué).")
|
| 277 |
+
|
| 278 |
+
# Chunking
|
| 279 |
+
records: List[Dict[str, Any]] = []
|
| 280 |
+
for f in req.files:
|
| 281 |
+
chunks = chunk_text(f.text, req.chunk_size, req.overlap)
|
| 282 |
+
if not chunks:
|
| 283 |
+
job.log(f"{f.path}: 0 chunk (trop court ou vide)")
|
| 284 |
+
for idx, (start, end, ch) in enumerate(chunks):
|
| 285 |
+
payload = {"path": f.path, "chunk": idx, "start": start, "end": end}
|
| 286 |
+
if req.store_text:
|
| 287 |
+
payload["text"] = ch
|
| 288 |
+
records.append({"payload": payload, "raw": ch})
|
| 289 |
+
job.total_chunks = len(records)
|
| 290 |
+
job.log(f"Total chunks = {job.total_chunks}")
|
| 291 |
+
|
| 292 |
+
if job.total_chunks == 0:
|
| 293 |
+
job.stage = "failed"
|
| 294 |
+
job.errors.append("Aucun chunk à indexer.")
|
| 295 |
+
job.finished_at = time.time()
|
| 296 |
+
return
|
| 297 |
+
|
| 298 |
+
async with httpx.AsyncClient(timeout=120) as client:
|
| 299 |
+
# Warmup dim
|
| 300 |
+
warmup_vec = (await embed_texts(client, [records[0]["raw"]]))[0]
|
| 301 |
+
vec_dim = len(warmup_vec)
|
| 302 |
+
job.log(f"Warmup embeddings dim={vec_dim}")
|
| 303 |
+
|
| 304 |
+
# Collection Qdrant
|
| 305 |
+
coll = f"{COLLECTION_PREFIX}{req.project_id}"
|
| 306 |
+
await ensure_collection(client, coll, vector_size=vec_dim)
|
| 307 |
+
job.log(f"Collection prête: {coll} (dim={vec_dim})")
|
| 308 |
+
|
| 309 |
+
job.stage = "upserting"
|
| 310 |
+
batch_points: List[Dict[str, Any]] = []
|
| 311 |
+
|
| 312 |
+
async def flush_batch():
|
| 313 |
+
nonlocal batch_points
|
| 314 |
+
if not batch_points:
|
| 315 |
+
return 0
|
| 316 |
+
added = await qdrant_upsert(client, coll, batch_points)
|
| 317 |
+
job.upserted += added
|
| 318 |
+
job.log(f"+{added} points upsert (total={job.upserted})")
|
| 319 |
+
batch_points = []
|
| 320 |
+
return added
|
| 321 |
+
|
| 322 |
+
EMB_BATCH = max(8, min(64, req.batch_size * 2))
|
| 323 |
+
i = 0
|
| 324 |
+
while i < len(records):
|
| 325 |
+
sub = records[i : i + EMB_BATCH]
|
| 326 |
+
texts = [r["raw"] for r in sub]
|
| 327 |
+
vecs = await embed_texts(client, texts)
|
| 328 |
+
if len(vecs) != len(sub):
|
| 329 |
+
raise HTTPException(status_code=500, detail="Embedding batch size mismatch")
|
| 330 |
+
job.embedded += len(vecs)
|
| 331 |
+
|
| 332 |
+
for r, v in zip(sub, vecs):
|
| 333 |
+
point = {"id": str(uuid.uuid4()), "vector": v, "payload": r["payload"]}
|
| 334 |
+
batch_points.append(point)
|
| 335 |
+
if len(batch_points) >= req.batch_size:
|
| 336 |
+
await flush_batch()
|
| 337 |
+
i += EMB_BATCH
|
| 338 |
+
|
| 339 |
+
await flush_batch()
|
| 340 |
+
|
| 341 |
+
job.stage = "done"
|
| 342 |
+
job.finished_at = time.time()
|
| 343 |
+
job.log("Index job terminé.")
|
| 344 |
+
except Exception as e:
|
| 345 |
job.stage = "failed"
|
| 346 |
+
job.errors.append(str(e))
|
| 347 |
job.finished_at = time.time()
|
| 348 |
+
job.log(f"❌ Exception: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
# ------------------------------------------------------------------------------
|
| 351 |
# FastAPI app + endpoints
|
|
|
|
| 364 |
|
| 365 |
@fastapi_app.get("/api")
|
| 366 |
async def api_info():
|
| 367 |
+
return {
|
| 368 |
+
"ok": True,
|
| 369 |
+
"service": "remote-indexer-min",
|
| 370 |
+
"qdrant": bool(QDRANT_URL),
|
| 371 |
+
"emb_provider": EMB_PROVIDER,
|
| 372 |
+
"hf_model": HF_EMBED_MODEL,
|
| 373 |
+
"ui_path": UI_PATH,
|
| 374 |
+
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
@fastapi_app.get("/debug/env")
|
| 378 |
+
async def debug_env():
|
| 379 |
+
return {
|
| 380 |
+
"qdrant_url_set": bool(QDRANT_URL),
|
| 381 |
+
"qdrant_key_set": bool(QDRANT_API_KEY),
|
| 382 |
+
"emb_provider": EMB_PROVIDER,
|
| 383 |
+
"hf_model": HF_EMBED_MODEL,
|
| 384 |
+
"hf_token_set": bool(HF_TOKEN),
|
| 385 |
+
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
|
| 386 |
+
"collection_prefix": COLLECTION_PREFIX,
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
# Redirige "/" → UI_PATH (ex.: /ui).
|
| 390 |
@fastapi_app.get("/")
|
| 391 |
async def root_redirect():
|
| 392 |
return RedirectResponse(url=UI_PATH, status_code=307)
|
|
|
|
| 520 |
gr.Markdown("## 🔬 Remote Indexer — Tests sans console\n"
|
| 521 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 522 |
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)\n"
|
| 523 |
+
f"- **Token HF présent**: `{'oui' if bool(HF_TOKEN) else 'non'}` — "
|
| 524 |
+
f"**Fallback dummy**: `{'on' if EMB_FALLBACK_TO_DUMMY else 'off'}`\n"
|
| 525 |
+
f"- **Qdrant**: `{'OK' if QDRANT_URL else 'ABSENT'}`")
|
| 526 |
with gr.Row():
|
| 527 |
project_tb = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 528 |
jobid_tb = gr.Textbox(label="Job ID (pour Status)", value="", interactive=True)
|