Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,51 +1,58 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
-
|
| 11 |
-
-
|
| 12 |
-
- POST /wipe?project_id=XXX
|
| 13 |
-
- POST /index
|
| 14 |
-
- GET /status/{job_id}
|
| 15 |
-
- GET /collections/{project_id}/count
|
| 16 |
-
- POST /query
|
| 17 |
-
- POST /collections/{project_id}/ensure?dim=XXX (debug)
|
| 18 |
|
| 19 |
ENV:
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
-
- LOG_LEVEL
|
| 27 |
-
- UI_PATH
|
| 28 |
-
- PORT
|
| 29 |
"""
|
| 30 |
|
| 31 |
from __future__ import annotations
|
| 32 |
import os
|
|
|
|
|
|
|
|
|
|
| 33 |
import time
|
| 34 |
import uuid
|
|
|
|
| 35 |
import hashlib
|
| 36 |
import logging
|
| 37 |
-
import threading
|
| 38 |
import asyncio
|
|
|
|
| 39 |
from typing import List, Dict, Any, Optional, Tuple
|
| 40 |
|
| 41 |
import numpy as np
|
| 42 |
import httpx
|
| 43 |
import uvicorn
|
|
|
|
|
|
|
| 44 |
from pydantic import BaseModel, Field, ValidationError
|
| 45 |
from fastapi import FastAPI, HTTPException, Query
|
| 46 |
from fastapi.middleware.cors import CORSMiddleware
|
| 47 |
-
from fastapi.responses import RedirectResponse
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# ------------------------------------------------------------------------------
|
| 51 |
# Config & logs
|
|
@@ -55,26 +62,24 @@ logging.basicConfig(
|
|
| 55 |
level=getattr(logging, LOG_LEVEL, logging.DEBUG),
|
| 56 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 57 |
)
|
| 58 |
-
LOG = logging.getLogger("
|
| 59 |
-
|
| 60 |
-
QDRANT_URL = os.getenv("QDRANT_URL", "").rstrip("/")
|
| 61 |
-
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "")
|
| 62 |
-
COLLECTION_PREFIX = os.getenv("COLLECTION_PREFIX", "proj_").strip() or "proj_"
|
| 63 |
|
| 64 |
-
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower()
|
| 65 |
HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
|
| 66 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
| 67 |
EMB_FALLBACK_TO_DUMMY = os.getenv("EMB_FALLBACK_TO_DUMMY", "false").lower() in ("1","true","yes","on")
|
| 68 |
|
|
|
|
|
|
|
|
|
|
| 69 |
UI_PATH = os.getenv("UI_PATH", "/ui")
|
|
|
|
| 70 |
|
| 71 |
-
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 72 |
-
LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.")
|
| 73 |
if EMB_PROVIDER == "hf" and not HF_TOKEN and not EMB_FALLBACK_TO_DUMMY:
|
| 74 |
-
LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN (pas de fallback)
|
| 75 |
|
| 76 |
# ------------------------------------------------------------------------------
|
| 77 |
-
#
|
| 78 |
# ------------------------------------------------------------------------------
|
| 79 |
class FileItem(BaseModel):
|
| 80 |
path: str
|
|
@@ -96,11 +101,11 @@ class QueryRequest(BaseModel):
|
|
| 96 |
class JobState(BaseModel):
|
| 97 |
job_id: str
|
| 98 |
project_id: str
|
| 99 |
-
stage: str = "pending" # pending -> embedding ->
|
| 100 |
total_files: int = 0
|
| 101 |
total_chunks: int = 0
|
| 102 |
embedded: int = 0
|
| 103 |
-
|
| 104 |
errors: List[str] = Field(default_factory=list)
|
| 105 |
messages: List[str] = Field(default_factory=list)
|
| 106 |
started_at: float = Field(default_factory=time.time)
|
|
@@ -114,6 +119,9 @@ class JobState(BaseModel):
|
|
| 114 |
|
| 115 |
JOBS: Dict[str, JobState] = {}
|
| 116 |
|
|
|
|
|
|
|
|
|
|
| 117 |
# ------------------------------------------------------------------------------
|
| 118 |
# Utils
|
| 119 |
# ------------------------------------------------------------------------------
|
|
@@ -151,90 +159,37 @@ def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int,
|
|
| 151 |
i = j
|
| 152 |
return res
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
recreate = True
|
| 178 |
-
elif r.status_code == 404:
|
| 179 |
-
_j(f"GET collection '{coll}' → 404 (à créer)")
|
| 180 |
-
else:
|
| 181 |
-
_j(f"GET collection '{coll}' → {r.status_code} {r.text}")
|
| 182 |
-
|
| 183 |
-
if r.status_code != 200 or recreate:
|
| 184 |
-
body = {"vectors": {"size": vector_size, "distance": "Cosine"}}
|
| 185 |
-
r2 = await client.put(url, headers={"api-key": QDRANT_API_KEY}, json=body, timeout=30)
|
| 186 |
-
_j(f"PUT create collection '{coll}' dim={vector_size} → {r2.status_code}")
|
| 187 |
-
if r2.status_code not in (200, 201):
|
| 188 |
-
raise HTTPException(status_code=500, detail=f"Qdrant PUT collection a échoué: {r2.text}")
|
| 189 |
-
|
| 190 |
-
# Poll jusqu'à visibilité
|
| 191 |
-
for i in range(10):
|
| 192 |
-
rg = await client.get(url, headers={"api-key": QDRANT_API_KEY}, timeout=20)
|
| 193 |
-
if rg.status_code == 200:
|
| 194 |
-
_j(f"Collection '{coll}' disponible (try={i+1})")
|
| 195 |
-
return
|
| 196 |
-
await asyncio.sleep(0.3)
|
| 197 |
-
raise HTTPException(status_code=500, detail=f"Collection '{coll}' non visible après création.")
|
| 198 |
-
|
| 199 |
-
async def qdrant_upsert(client: httpx.AsyncClient, coll: str, points: List[Dict[str, Any]], job: Optional[JobState] = None) -> int:
|
| 200 |
-
if not points:
|
| 201 |
-
return 0
|
| 202 |
-
url = f"{QDRANT_URL}/collections/{coll}/points?wait=true"
|
| 203 |
-
body = {"points": points}
|
| 204 |
-
r = await client.put(url, headers={"api-key": QDRANT_API_KEY}, json=body, timeout=60)
|
| 205 |
-
if r.status_code not in (200, 202):
|
| 206 |
-
if job: job.log(f"Upsert → {r.status_code}: {r.text[:200]}")
|
| 207 |
-
raise HTTPException(status_code=500, detail=f"Qdrant upsert échoué: {r.text}")
|
| 208 |
-
return len(points)
|
| 209 |
-
|
| 210 |
-
async def qdrant_count(client: httpx.AsyncClient, coll: str) -> int:
|
| 211 |
-
url = f"{QDRANT_URL}/collections/{coll}/points/count"
|
| 212 |
-
r = await client.post(url, headers={"api-key": QDRANT_API_KEY}, json={"exact": True}, timeout=20)
|
| 213 |
-
if r.status_code == 404 and "doesn't exist" in (r.text or ""):
|
| 214 |
-
# Tolérant: collection absente → 0 (utile pour l'UI)
|
| 215 |
-
return 0
|
| 216 |
-
if r.status_code != 200:
|
| 217 |
-
raise HTTPException(status_code=500, detail=f"Qdrant count échoué: {r.text}")
|
| 218 |
-
return int(r.json().get("result", {}).get("count", 0))
|
| 219 |
-
|
| 220 |
-
async def qdrant_search(client: httpx.AsyncClient, coll: str, vector: List[float], limit: int = 5) -> Dict[str, Any]:
|
| 221 |
-
url = f"{QDRANT_URL}/collections/{coll}/points/search"
|
| 222 |
-
r = await client.post(
|
| 223 |
-
url,
|
| 224 |
-
headers={"api-key": QDRANT_API_KEY},
|
| 225 |
-
json={"vector": vector, "limit": limit, "with_payload": True},
|
| 226 |
-
timeout=30,
|
| 227 |
-
)
|
| 228 |
-
if r.status_code != 200:
|
| 229 |
-
raise HTTPException(status_code=500, detail=f"Qdrant search échoué: {r.text}")
|
| 230 |
-
return r.json()
|
| 231 |
|
| 232 |
# ------------------------------------------------------------------------------
|
| 233 |
-
# Embeddings
|
| 234 |
# ------------------------------------------------------------------------------
|
| 235 |
def _maybe_prefix_for_model(texts: List[str], model_name: str) -> List[str]:
|
| 236 |
m = (model_name or "").lower()
|
| 237 |
if "e5" in m:
|
|
|
|
| 238 |
return [("query: " + t) for t in texts]
|
| 239 |
return texts
|
| 240 |
|
|
@@ -284,9 +239,14 @@ async def embed_texts(client: httpx.AsyncClient, texts: List[str]) -> List[List[
|
|
| 284 |
return embed_dummy(texts, dim=128)
|
| 285 |
|
| 286 |
# ------------------------------------------------------------------------------
|
| 287 |
-
#
|
| 288 |
# ------------------------------------------------------------------------------
|
| 289 |
-
async def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
try:
|
| 291 |
job.stage = "embedding"
|
| 292 |
job.total_files = len(req.files)
|
|
@@ -306,7 +266,10 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 306 |
payload = {"path": f.path, "chunk": idx, "start": start, "end": end}
|
| 307 |
if req.store_text:
|
| 308 |
payload["text"] = ch
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
| 310 |
job.total_chunks = len(records)
|
| 311 |
job.log(f"Total chunks = {job.total_chunks}")
|
| 312 |
if job.total_chunks == 0:
|
|
@@ -315,53 +278,72 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 315 |
job.finished_at = time.time()
|
| 316 |
return
|
| 317 |
|
|
|
|
| 318 |
async with httpx.AsyncClient(timeout=180) as client:
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
vec_dim = len(warmup_vec)
|
| 322 |
-
job.log(f"Warmup embeddings dim={vec_dim}")
|
| 323 |
-
|
| 324 |
-
# Collection (hard ensure)
|
| 325 |
-
coll = f"{COLLECTION_PREFIX}{req.project_id}"
|
| 326 |
-
await ensure_collection_hard(client, coll, vector_size=vec_dim, job=job)
|
| 327 |
-
job.log(f"Collection prête: {coll} (dim={vec_dim})")
|
| 328 |
-
|
| 329 |
-
# Upsert
|
| 330 |
-
job.stage = "upserting"
|
| 331 |
-
batch_points: List[Dict[str, Any]] = []
|
| 332 |
-
|
| 333 |
-
async def flush_batch():
|
| 334 |
-
nonlocal batch_points
|
| 335 |
-
if not batch_points:
|
| 336 |
-
return 0
|
| 337 |
-
added = await qdrant_upsert(client, coll, batch_points, job=job)
|
| 338 |
-
job.upserted += added
|
| 339 |
-
job.log(f"+{added} points upsert (total={job.upserted})")
|
| 340 |
-
batch_points = []
|
| 341 |
-
return added
|
| 342 |
-
|
| 343 |
-
EMB_BATCH = max(8, min(64, req.batch_size * 2))
|
| 344 |
i = 0
|
| 345 |
while i < len(records):
|
| 346 |
-
sub = records[i : i +
|
| 347 |
texts = [r["raw"] for r in sub]
|
| 348 |
vecs = await embed_texts(client, texts)
|
| 349 |
if len(vecs) != len(sub):
|
| 350 |
raise HTTPException(status_code=500, detail="Embedding batch size mismatch")
|
|
|
|
| 351 |
job.embedded += len(vecs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
i += EMB_BATCH
|
| 359 |
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
job.stage = "done"
|
| 363 |
job.finished_at = time.time()
|
| 364 |
-
job.log("
|
| 365 |
except Exception as e:
|
| 366 |
job.stage = "failed"
|
| 367 |
job.errors.append(str(e))
|
|
@@ -369,10 +351,9 @@ async def run_index_job(job: JobState, req: IndexRequest) -> None:
|
|
| 369 |
job.log(f"❌ Exception: {e}")
|
| 370 |
|
| 371 |
def _run_job_in_thread(job: JobState, req: IndexRequest) -> None:
|
| 372 |
-
"""Exécute l'async run_index_job dans un thread dédié avec son propre event loop."""
|
| 373 |
def _runner():
|
| 374 |
try:
|
| 375 |
-
asyncio.run(
|
| 376 |
except Exception as e:
|
| 377 |
job.stage = "failed"
|
| 378 |
job.errors.append(str(e))
|
|
@@ -389,41 +370,49 @@ def create_and_start_job(req: IndexRequest) -> JobState:
|
|
| 389 |
_run_job_in_thread(job, req)
|
| 390 |
return job
|
| 391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
# ------------------------------------------------------------------------------
|
| 393 |
# FastAPI app
|
| 394 |
# ------------------------------------------------------------------------------
|
| 395 |
-
fastapi_app = FastAPI(title="Remote Indexer -
|
| 396 |
fastapi_app.add_middleware(
|
| 397 |
-
CORSMiddleware,
|
| 398 |
-
allow_origins=["*"],
|
| 399 |
-
allow_methods=["*"],
|
| 400 |
-
allow_headers=["*"],
|
| 401 |
)
|
| 402 |
|
| 403 |
@fastapi_app.get("/health")
|
| 404 |
async def health():
|
| 405 |
-
return {"status": "ok"}
|
| 406 |
|
| 407 |
@fastapi_app.get("/api")
|
| 408 |
async def api_info():
|
| 409 |
return {
|
| 410 |
-
"ok": True, "service": "remote-indexer-
|
| 411 |
-
"qdrant": bool(QDRANT_URL),
|
| 412 |
"emb_provider": EMB_PROVIDER, "hf_model": HF_EMBED_MODEL,
|
| 413 |
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
|
| 414 |
-
"ui_path": UI_PATH,
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
@fastapi_app.get("/debug/env")
|
| 418 |
-
async def debug_env():
|
| 419 |
-
return {
|
| 420 |
-
"qdrant_url_set": bool(QDRANT_URL),
|
| 421 |
-
"qdrant_key_set": bool(QDRANT_API_KEY),
|
| 422 |
-
"emb_provider": EMB_PROVIDER,
|
| 423 |
-
"hf_model": HF_EMBED_MODEL,
|
| 424 |
-
"hf_token_set": bool(HF_TOKEN),
|
| 425 |
-
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
|
| 426 |
-
"collection_prefix": COLLECTION_PREFIX,
|
| 427 |
}
|
| 428 |
|
| 429 |
@fastapi_app.get("/")
|
|
@@ -432,19 +421,15 @@ async def root_redirect():
|
|
| 432 |
|
| 433 |
@fastapi_app.post("/wipe")
|
| 434 |
async def wipe(project_id: str = Query(..., min_length=1)):
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
raise HTTPException(status_code=500, detail=f"Echec wipe: {r.text}")
|
| 442 |
-
return {"ok": True, "collection": coll, "wiped": True}
|
| 443 |
|
| 444 |
@fastapi_app.post("/index")
|
| 445 |
async def index(req: IndexRequest):
|
| 446 |
-
if not QDRANT_URL or not QDRANT_API_KEY:
|
| 447 |
-
raise HTTPException(status_code=400, detail="QDRANT_URL / QDRANT_API_KEY requis")
|
| 448 |
job = create_and_start_job(req)
|
| 449 |
return {"job_id": job.job_id, "project_id": job.project_id}
|
| 450 |
|
|
@@ -457,39 +442,70 @@ async def status(job_id: str):
|
|
| 457 |
|
| 458 |
@fastapi_app.get("/collections/{project_id}/count")
|
| 459 |
async def coll_count(project_id: str):
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
cnt = await qdrant_count(client, coll)
|
| 466 |
-
return {"project_id": project_id, "collection": coll, "count": cnt}
|
| 467 |
-
except HTTPException as he:
|
| 468 |
-
# On remonte le 500 (autre qu'un 404 not found géré dans qdrant_count)
|
| 469 |
-
raise he
|
| 470 |
|
| 471 |
@fastapi_app.post("/query")
|
| 472 |
async def query(req: QueryRequest):
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
""
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
|
| 491 |
# ------------------------------------------------------------------------------
|
| 492 |
-
# Gradio UI
|
| 493 |
# ------------------------------------------------------------------------------
|
| 494 |
def _default_two_docs() -> List[Dict[str, str]]:
|
| 495 |
a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3
|
|
@@ -498,8 +514,8 @@ def _default_two_docs() -> List[Dict[str, str]]:
|
|
| 498 |
|
| 499 |
async def ui_wipe(project: str):
|
| 500 |
try:
|
| 501 |
-
resp = await wipe(project)
|
| 502 |
-
return f"✅ Wipe ok —
|
| 503 |
except Exception as e:
|
| 504 |
LOG.exception("wipe UI error")
|
| 505 |
return f"❌ Wipe erreur: {e}"
|
|
@@ -528,8 +544,8 @@ async def ui_status(job_id: str):
|
|
| 528 |
return "⚠️ Renseigne un job_id"
|
| 529 |
try:
|
| 530 |
st = await status(job_id)
|
| 531 |
-
lines = [f"Job {st['job_id']} — stage={st['stage']} files={st['total_files']} chunks={st['total_chunks']} embedded={st['embedded']}
|
| 532 |
-
lines += st.get("messages", [])[-
|
| 533 |
if st.get("errors"):
|
| 534 |
lines.append("Erreurs:")
|
| 535 |
lines += [f" - {e}" for e in st['errors']]
|
|
@@ -539,11 +555,8 @@ async def ui_status(job_id: str):
|
|
| 539 |
|
| 540 |
async def ui_count(project: str):
|
| 541 |
try:
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
coll = f"{COLLECTION_PREFIX}{project}"
|
| 545 |
-
cnt = await qdrant_count(client, coll)
|
| 546 |
-
return f"📊 Count — collection={coll} → {cnt} points"
|
| 547 |
except Exception as e:
|
| 548 |
LOG.exception("count UI error")
|
| 549 |
return f"❌ Count erreur: {e}"
|
|
@@ -556,37 +569,31 @@ async def ui_query(project: str, text: str, topk: int):
|
|
| 556 |
return "Aucun résultat."
|
| 557 |
out = []
|
| 558 |
for h in hits:
|
| 559 |
-
score
|
| 560 |
-
payload = h.get("payload", {})
|
| 561 |
-
path = payload.get("path")
|
| 562 |
-
chunk = payload.get("chunk")
|
| 563 |
-
preview = (payload.get("text") or "")[:120].replace("\n", " ")
|
| 564 |
-
out.append(f"{score:.4f} — {path} [chunk {chunk}] — {preview}…")
|
| 565 |
return "\n".join(out)
|
| 566 |
except Exception as e:
|
| 567 |
LOG.exception("query UI error")
|
| 568 |
return f"❌ Query erreur: {e}"
|
| 569 |
|
| 570 |
-
async def
|
| 571 |
try:
|
| 572 |
-
resp = await
|
| 573 |
-
return f"
|
| 574 |
except Exception as e:
|
| 575 |
-
LOG.exception("
|
| 576 |
-
return f"❌
|
| 577 |
|
| 578 |
-
with gr.Blocks(title="Remote Indexer —
|
| 579 |
-
gr.Markdown("##
|
| 580 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 581 |
-
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)
|
| 582 |
-
f"
|
| 583 |
-
f"**
|
| 584 |
-
f"- **Qdrant**: `{'OK' if QDRANT_URL else 'ABSENT'}`")
|
| 585 |
with gr.Row():
|
| 586 |
project_tb = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 587 |
jobid_tb = gr.Textbox(label="Job ID", value="", interactive=True)
|
| 588 |
with gr.Row():
|
| 589 |
-
wipe_btn = gr.Button("🧨 Wipe
|
| 590 |
index_btn = gr.Button("🚀 Indexer 2 documents", variant="primary")
|
| 591 |
count_btn = gr.Button("📊 Count points", variant="secondary")
|
| 592 |
with gr.Row():
|
|
@@ -600,16 +607,16 @@ with gr.Blocks(title="Remote Indexer — Tests sans console", analytics_enabled=
|
|
| 600 |
status_btn = gr.Button("📡 Status (refresh)")
|
| 601 |
auto_chk = gr.Checkbox(False, label="⏱️ Auto-refresh status (2 s)")
|
| 602 |
|
| 603 |
-
with gr.Row():
|
| 604 |
-
ensure_dim = gr.Slider(16, 2048, value=128, step=16, label="ensure dim (debug)")
|
| 605 |
-
ensure_btn = gr.Button("🛠️ Ensure collection (debug)")
|
| 606 |
-
|
| 607 |
with gr.Row():
|
| 608 |
query_tb = gr.Textbox(label="Query text", value="alpha bravo")
|
| 609 |
topk = gr.Slider(1, 20, value=5, step=1, label="top_k")
|
| 610 |
query_btn = gr.Button("🔎 Query")
|
| 611 |
query_out = gr.Textbox(lines=10, label="Résultats Query", interactive=False)
|
| 612 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 613 |
wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log])
|
| 614 |
index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log, jobid_tb])
|
| 615 |
count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log])
|
|
@@ -619,9 +626,11 @@ with gr.Blocks(title="Remote Indexer — Tests sans console", analytics_enabled=
|
|
| 619 |
timer.tick(ui_status, inputs=[jobid_tb], outputs=[out_log])
|
| 620 |
auto_chk.change(lambda x: gr.update(active=x), inputs=auto_chk, outputs=timer)
|
| 621 |
|
| 622 |
-
|
|
|
|
|
|
|
| 623 |
|
| 624 |
-
# Monte l'UI
|
| 625 |
app = gr.mount_gradio_app(fastapi_app, ui, path=UI_PATH)
|
| 626 |
|
| 627 |
if __name__ == "__main__":
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
+
HF Space - Remote Indexer (No-Qdrant)
|
| 4 |
+
Stockage & recherche vectorielle avec 🤗 datasets + FAISS (local), UI Gradio.
|
| 5 |
+
|
| 6 |
+
Pipeline:
|
| 7 |
+
- /index: chunk → embeddings (HF Inference ou dummy) → Dataset.from_dict → add_faiss_index(IP) → save_to_disk
|
| 8 |
+
- /count: lit le dataset sur disque (si non chargé) → renvoie nb de lignes
|
| 9 |
+
- /query: embed requête → dataset.get_nearest_examples('embedding', query, k)
|
| 10 |
+
- /wipe: supprime le dossier projet
|
| 11 |
+
- /export_hub (optionnel): pousse le dossier projet dans un repo Dataset du Hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
ENV:
|
| 14 |
+
- EMB_PROVIDER ("hf" | "dummy", défaut "hf")
|
| 15 |
+
- HF_EMBED_MODEL (ex: "BAAI/bge-m3" | "intfloat/e5-base-v2")
|
| 16 |
+
- HUGGINGFACEHUB_API_TOKEN (requis si EMB_PROVIDER=hf)
|
| 17 |
+
- EMB_FALLBACK_TO_DUMMY (true/false)
|
| 18 |
+
- DATA_DIR (défaut "/data") → stockage local par projet
|
| 19 |
+
- HF_DATASET_REPO (optionnel "username/my_proj_vectors") pour export
|
| 20 |
+
- LOG_LEVEL (DEBUG par défaut)
|
| 21 |
+
- UI_PATH ("/ui")
|
| 22 |
+
- PORT (7860)
|
| 23 |
"""
|
| 24 |
|
| 25 |
from __future__ import annotations
|
| 26 |
import os
|
| 27 |
+
import io
|
| 28 |
+
import re
|
| 29 |
+
import json
|
| 30 |
import time
|
| 31 |
import uuid
|
| 32 |
+
import shutil
|
| 33 |
import hashlib
|
| 34 |
import logging
|
|
|
|
| 35 |
import asyncio
|
| 36 |
+
import threading
|
| 37 |
from typing import List, Dict, Any, Optional, Tuple
|
| 38 |
|
| 39 |
import numpy as np
|
| 40 |
import httpx
|
| 41 |
import uvicorn
|
| 42 |
+
import gradio as gr
|
| 43 |
+
import faiss # type: ignore
|
| 44 |
from pydantic import BaseModel, Field, ValidationError
|
| 45 |
from fastapi import FastAPI, HTTPException, Query
|
| 46 |
from fastapi.middleware.cors import CORSMiddleware
|
| 47 |
+
from fastapi.responses import RedirectResponse, StreamingResponse
|
| 48 |
+
|
| 49 |
+
from datasets import Dataset, Features, Sequence, Value, load_from_disk
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
from huggingface_hub import HfApi, create_repo
|
| 53 |
+
except Exception:
|
| 54 |
+
HfApi = None
|
| 55 |
+
create_repo = None
|
| 56 |
|
| 57 |
# ------------------------------------------------------------------------------
|
| 58 |
# Config & logs
|
|
|
|
| 62 |
level=getattr(logging, LOG_LEVEL, logging.DEBUG),
|
| 63 |
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 64 |
)
|
| 65 |
+
LOG = logging.getLogger("remote_indexer_noqdrant")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower() # "hf" | "dummy"
|
| 68 |
HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3")
|
| 69 |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
| 70 |
EMB_FALLBACK_TO_DUMMY = os.getenv("EMB_FALLBACK_TO_DUMMY", "false").lower() in ("1","true","yes","on")
|
| 71 |
|
| 72 |
+
DATA_DIR = os.getenv("DATA_DIR", "/data")
|
| 73 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
| 74 |
+
|
| 75 |
UI_PATH = os.getenv("UI_PATH", "/ui")
|
| 76 |
+
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO", "").strip() # optionnel
|
| 77 |
|
|
|
|
|
|
|
| 78 |
if EMB_PROVIDER == "hf" and not HF_TOKEN and not EMB_FALLBACK_TO_DUMMY:
|
| 79 |
+
LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN (pas de fallback). Mets EMB_PROVIDER=dummy ou EMB_FALLBACK_TO_DUMMY=true pour tester.")
|
| 80 |
|
| 81 |
# ------------------------------------------------------------------------------
|
| 82 |
+
# Modèles Pydantic
|
| 83 |
# ------------------------------------------------------------------------------
|
| 84 |
class FileItem(BaseModel):
|
| 85 |
path: str
|
|
|
|
| 101 |
class JobState(BaseModel):
|
| 102 |
job_id: str
|
| 103 |
project_id: str
|
| 104 |
+
stage: str = "pending" # pending -> embedding -> indexing -> done/failed
|
| 105 |
total_files: int = 0
|
| 106 |
total_chunks: int = 0
|
| 107 |
embedded: int = 0
|
| 108 |
+
indexed: int = 0
|
| 109 |
errors: List[str] = Field(default_factory=list)
|
| 110 |
messages: List[str] = Field(default_factory=list)
|
| 111 |
started_at: float = Field(default_factory=time.time)
|
|
|
|
| 119 |
|
| 120 |
JOBS: Dict[str, JobState] = {}
|
| 121 |
|
| 122 |
+
# In-memory cache {project_id: (Dataset, dim)}
|
| 123 |
+
DATASETS: Dict[str, Tuple[Dataset, int]] = {}
|
| 124 |
+
|
| 125 |
# ------------------------------------------------------------------------------
|
| 126 |
# Utils
|
| 127 |
# ------------------------------------------------------------------------------
|
|
|
|
| 159 |
i = j
|
| 160 |
return res
|
| 161 |
|
| 162 |
+
def project_paths(project_id: str) -> Dict[str, str]:
|
| 163 |
+
base = os.path.join(DATA_DIR, project_id)
|
| 164 |
+
return {
|
| 165 |
+
"base": base,
|
| 166 |
+
"ds_dir": os.path.join(base, "dataset"),
|
| 167 |
+
"faiss_dir": os.path.join(base, "faiss"),
|
| 168 |
+
"faiss_file": os.path.join(base, "faiss", "emb.faiss"),
|
| 169 |
+
"meta_file": os.path.join(base, "meta.json"),
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
def save_meta(meta_path: str, data: Dict[str, Any]) -> None:
|
| 173 |
+
os.makedirs(os.path.dirname(meta_path), exist_ok=True)
|
| 174 |
+
with open(meta_path, "w", encoding="utf-8") as f:
|
| 175 |
+
json.dump(data, f, indent=2, ensure_ascii=False)
|
| 176 |
+
|
| 177 |
+
def load_meta(meta_path: str) -> Dict[str, Any]:
|
| 178 |
+
if not os.path.exists(meta_path):
|
| 179 |
+
return {}
|
| 180 |
+
try:
|
| 181 |
+
with open(meta_path, "r", encoding="utf-8") as f:
|
| 182 |
+
return json.load(f)
|
| 183 |
+
except Exception:
|
| 184 |
+
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# ------------------------------------------------------------------------------
|
| 187 |
+
# Embeddings (HF Inference ou dummy)
|
| 188 |
# ------------------------------------------------------------------------------
|
| 189 |
def _maybe_prefix_for_model(texts: List[str], model_name: str) -> List[str]:
|
| 190 |
m = (model_name or "").lower()
|
| 191 |
if "e5" in m:
|
| 192 |
+
# E5: "query: ..." / "passage: ..." etc. Ici on uniformise simple.
|
| 193 |
return [("query: " + t) for t in texts]
|
| 194 |
return texts
|
| 195 |
|
|
|
|
| 239 |
return embed_dummy(texts, dim=128)
|
| 240 |
|
| 241 |
# ------------------------------------------------------------------------------
|
| 242 |
+
# Indexation (datasets + FAISS)
|
| 243 |
# ------------------------------------------------------------------------------
|
| 244 |
+
async def build_dataset_with_faiss(job: JobState, req: IndexRequest) -> None:
|
| 245 |
+
"""
|
| 246 |
+
Construit un dataset HuggingFace avec colonnes:
|
| 247 |
+
- path (str), text (optionnel), chunk (int), start (int), end (int), embedding (float32[])
|
| 248 |
+
Ajoute un index FAISS (Inner Product) et persiste sur disque.
|
| 249 |
+
"""
|
| 250 |
try:
|
| 251 |
job.stage = "embedding"
|
| 252 |
job.total_files = len(req.files)
|
|
|
|
| 266 |
payload = {"path": f.path, "chunk": idx, "start": start, "end": end}
|
| 267 |
if req.store_text:
|
| 268 |
payload["text"] = ch
|
| 269 |
+
else:
|
| 270 |
+
payload["text"] = None
|
| 271 |
+
payload["raw"] = ch
|
| 272 |
+
records.append(payload)
|
| 273 |
job.total_chunks = len(records)
|
| 274 |
job.log(f"Total chunks = {job.total_chunks}")
|
| 275 |
if job.total_chunks == 0:
|
|
|
|
| 278 |
job.finished_at = time.time()
|
| 279 |
return
|
| 280 |
|
| 281 |
+
# Embeddings par batch
|
| 282 |
async with httpx.AsyncClient(timeout=180) as client:
|
| 283 |
+
all_vecs: List[List[float]] = []
|
| 284 |
+
B = max(8, min(64, req.batch_size * 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
i = 0
|
| 286 |
while i < len(records):
|
| 287 |
+
sub = records[i : i + B]
|
| 288 |
texts = [r["raw"] for r in sub]
|
| 289 |
vecs = await embed_texts(client, texts)
|
| 290 |
if len(vecs) != len(sub):
|
| 291 |
raise HTTPException(status_code=500, detail="Embedding batch size mismatch")
|
| 292 |
+
all_vecs.extend(vecs)
|
| 293 |
job.embedded += len(vecs)
|
| 294 |
+
job.log(f"Embeddings {job.embedded}/{job.total_chunks}")
|
| 295 |
+
i += B
|
| 296 |
+
|
| 297 |
+
vec_dim = len(all_vecs[0])
|
| 298 |
+
job.log(f"Embeddings dim={vec_dim}")
|
| 299 |
+
|
| 300 |
+
# Prépare colonnes du dataset
|
| 301 |
+
paths = [r["path"] for r in records]
|
| 302 |
+
chunks = [int(r["chunk"]) for r in records]
|
| 303 |
+
starts = [int(r["start"]) for r in records]
|
| 304 |
+
ends = [int(r["end"]) for r in records]
|
| 305 |
+
texts = [r.get("text") for r in records]
|
| 306 |
+
|
| 307 |
+
features = Features({
|
| 308 |
+
"path": Value("string"),
|
| 309 |
+
"chunk": Value("int32"),
|
| 310 |
+
"start": Value("int32"),
|
| 311 |
+
"end": Value("int32"),
|
| 312 |
+
"text": Value("string"), # peut contenir None -> sera "None" si None ; OK pour tests
|
| 313 |
+
"embedding": Sequence(Value("float32")),
|
| 314 |
+
})
|
| 315 |
+
|
| 316 |
+
ds = Dataset.from_dict(
|
| 317 |
+
{
|
| 318 |
+
"path": paths,
|
| 319 |
+
"chunk": chunks,
|
| 320 |
+
"start": starts,
|
| 321 |
+
"end": ends,
|
| 322 |
+
"text": texts,
|
| 323 |
+
"embedding": [np.array(v, dtype=np.float32) for v in all_vecs],
|
| 324 |
+
},
|
| 325 |
+
features=features,
|
| 326 |
+
)
|
| 327 |
|
| 328 |
+
# Ajoute index FAISS (Inner Product sur vecteurs normalisés ~ cosine)
|
| 329 |
+
job.stage = "indexing"
|
| 330 |
+
ds.add_faiss_index(column="embedding", metric_type=faiss.METRIC_INNER_PRODUCT)
|
| 331 |
+
job.indexed = ds.num_rows
|
| 332 |
+
job.log(f"FAISS index ajouté ({ds.num_rows} points)")
|
|
|
|
| 333 |
|
| 334 |
+
# Persistance disque
|
| 335 |
+
p = project_paths(req.project_id)
|
| 336 |
+
os.makedirs(p["faiss_dir"], exist_ok=True)
|
| 337 |
+
ds.save_to_disk(p["ds_dir"])
|
| 338 |
+
ds.save_faiss_index("embedding", p["faiss_file"])
|
| 339 |
+
save_meta(p["meta_file"], {"dim": vec_dim, "rows": ds.num_rows, "model": HF_EMBED_MODEL, "ts": time.time()})
|
| 340 |
+
|
| 341 |
+
# Cache mémoire
|
| 342 |
+
DATASETS[req.project_id] = (ds, vec_dim)
|
| 343 |
|
| 344 |
job.stage = "done"
|
| 345 |
job.finished_at = time.time()
|
| 346 |
+
job.log(f"Dataset sauvegardé dans {p['ds_dir']}, index FAISS → {p['faiss_file']}")
|
| 347 |
except Exception as e:
|
| 348 |
job.stage = "failed"
|
| 349 |
job.errors.append(str(e))
|
|
|
|
| 351 |
job.log(f"❌ Exception: {e}")
|
| 352 |
|
| 353 |
def _run_job_in_thread(job: JobState, req: IndexRequest) -> None:
|
|
|
|
| 354 |
def _runner():
|
| 355 |
try:
|
| 356 |
+
asyncio.run(build_dataset_with_faiss(job, req))
|
| 357 |
except Exception as e:
|
| 358 |
job.stage = "failed"
|
| 359 |
job.errors.append(str(e))
|
|
|
|
| 370 |
_run_job_in_thread(job, req)
|
| 371 |
return job
|
| 372 |
|
| 373 |
+
# ------------------------------------------------------------------------------
|
| 374 |
+
# Chargement / Query helpers
|
| 375 |
+
# ------------------------------------------------------------------------------
|
| 376 |
+
def ensure_loaded(project_id: str) -> Tuple[Dataset, int]:
|
| 377 |
+
"""Charge le dataset+faiss depuis disque si pas en cache mémoire."""
|
| 378 |
+
if project_id in DATASETS:
|
| 379 |
+
return DATASETS[project_id]
|
| 380 |
+
p = project_paths(project_id)
|
| 381 |
+
if not os.path.exists(p["ds_dir"]):
|
| 382 |
+
raise HTTPException(status_code=404, detail=f"Dataset absent pour projet {project_id}")
|
| 383 |
+
ds = load_from_disk(p["ds_dir"])
|
| 384 |
+
if os.path.exists(p["faiss_file"]):
|
| 385 |
+
ds.load_faiss_index("embedding", p["faiss_file"])
|
| 386 |
+
meta = load_meta(p["meta_file"])
|
| 387 |
+
vec_dim = int(meta.get("dim", 0)) or len(ds[0]["embedding"])
|
| 388 |
+
DATASETS[project_id] = (ds, vec_dim)
|
| 389 |
+
return ds, vec_dim
|
| 390 |
+
|
| 391 |
+
async def embed_query(text: str) -> List[float]:
|
| 392 |
+
async with httpx.AsyncClient(timeout=60) as client:
|
| 393 |
+
vec = (await embed_texts(client, [text]))[0]
|
| 394 |
+
return vec
|
| 395 |
+
|
| 396 |
# ------------------------------------------------------------------------------
|
| 397 |
# FastAPI app
|
| 398 |
# ------------------------------------------------------------------------------
|
| 399 |
+
fastapi_app = FastAPI(title="Remote Indexer - NoQdrant (Datasets+FAISS)")
|
| 400 |
fastapi_app.add_middleware(
|
| 401 |
+
CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"]
|
|
|
|
|
|
|
|
|
|
| 402 |
)
|
| 403 |
|
| 404 |
@fastapi_app.get("/health")
|
| 405 |
async def health():
|
| 406 |
+
return {"status": "ok", "emb_provider": EMB_PROVIDER, "model": HF_EMBED_MODEL}
|
| 407 |
|
| 408 |
@fastapi_app.get("/api")
|
| 409 |
async def api_info():
|
| 410 |
return {
|
| 411 |
+
"ok": True, "service": "remote-indexer-noqdrant",
|
|
|
|
| 412 |
"emb_provider": EMB_PROVIDER, "hf_model": HF_EMBED_MODEL,
|
| 413 |
"fallback_to_dummy": EMB_FALLBACK_TO_DUMMY,
|
| 414 |
+
"data_dir": DATA_DIR, "ui_path": UI_PATH,
|
| 415 |
+
"hub_export_enabled": bool(HF_DATASET_REPO and HfApi),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
}
|
| 417 |
|
| 418 |
@fastapi_app.get("/")
|
|
|
|
| 421 |
|
| 422 |
@fastapi_app.post("/wipe")
|
| 423 |
async def wipe(project_id: str = Query(..., min_length=1)):
|
| 424 |
+
p = project_paths(project_id)
|
| 425 |
+
if os.path.exists(p["base"]):
|
| 426 |
+
shutil.rmtree(p["base"], ignore_errors=True)
|
| 427 |
+
if project_id in DATASETS:
|
| 428 |
+
DATASETS.pop(project_id, None)
|
| 429 |
+
return {"ok": True, "project_id": project_id, "removed": True}
|
|
|
|
|
|
|
| 430 |
|
| 431 |
@fastapi_app.post("/index")
|
| 432 |
async def index(req: IndexRequest):
|
|
|
|
|
|
|
| 433 |
job = create_and_start_job(req)
|
| 434 |
return {"job_id": job.job_id, "project_id": job.project_id}
|
| 435 |
|
|
|
|
| 442 |
|
| 443 |
@fastapi_app.get("/collections/{project_id}/count")
|
| 444 |
async def coll_count(project_id: str):
|
| 445 |
+
try:
|
| 446 |
+
ds, _ = ensure_loaded(project_id)
|
| 447 |
+
return {"project_id": project_id, "count": ds.num_rows}
|
| 448 |
+
except Exception as e:
|
| 449 |
+
return {"project_id": project_id, "count": 0, "note": f"{e}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
|
| 451 |
@fastapi_app.post("/query")
|
| 452 |
async def query(req: QueryRequest):
|
| 453 |
+
ds, vec_dim = ensure_loaded(req.project_id)
|
| 454 |
+
qvec = await embed_query(req.text)
|
| 455 |
+
if len(qvec) != vec_dim:
|
| 456 |
+
raise HTTPException(status_code=400, detail=f"Dim requête {len(qvec)} ≠ dim index {vec_dim}")
|
| 457 |
+
# get_nearest_examples renvoie (scores, examples)
|
| 458 |
+
scores, ex = ds.get_nearest_examples("embedding", np.array(qvec, dtype=np.float32), k=req.top_k)
|
| 459 |
+
results = []
|
| 460 |
+
for s, path, chunk, text in zip(scores, ex["path"], ex["chunk"], ex["text"]):
|
| 461 |
+
preview = ((text or "")[:160]).replace("\n", " ")
|
| 462 |
+
results.append({"score": float(s), "path": path, "chunk": int(chunk), "preview": preview})
|
| 463 |
+
return {"result": results, "k": req.top_k}
|
| 464 |
+
|
| 465 |
+
@fastapi_app.post("/export_hub")
|
| 466 |
+
async def export_hub(project_id: str = Query(..., min_length=1), repo_id: Optional[str] = None):
|
| 467 |
+
"""
|
| 468 |
+
Optionnel: push le dossier du projet (dataset + faiss + meta) dans un repo Dataset du Hub.
|
| 469 |
+
- HF_DATASET_REPO ou ?repo_id=... (ex: "chourmovs/deepweb_vectors")
|
| 470 |
+
"""
|
| 471 |
+
if not HfApi or not HF_TOKEN:
|
| 472 |
+
raise HTTPException(status_code=400, detail="huggingface_hub non dispo ou HF token absent.")
|
| 473 |
+
p = project_paths(project_id)
|
| 474 |
+
if not os.path.exists(p["ds_dir"]):
|
| 475 |
+
raise HTTPException(status_code=404, detail="Aucun dataset local à exporter.")
|
| 476 |
+
rid = (repo_id or HF_DATASET_REPO or "").strip()
|
| 477 |
+
if not rid:
|
| 478 |
+
raise HTTPException(status_code=400, detail="repo_id requis (ou HF_DATASET_REPO).")
|
| 479 |
+
|
| 480 |
+
api = HfApi(token=HF_TOKEN)
|
| 481 |
+
try:
|
| 482 |
+
create_repo(rid, repo_type="dataset", exist_ok=True, token=HF_TOKEN)
|
| 483 |
+
except Exception:
|
| 484 |
+
pass
|
| 485 |
+
|
| 486 |
+
# Zipper le dossier projet pour un upload rapide
|
| 487 |
+
buf = io.BytesIO()
|
| 488 |
+
base_dir = p["base"]
|
| 489 |
+
zip_name = f"{project_id}_vectors.zip"
|
| 490 |
+
import zipfile
|
| 491 |
+
with zipfile.ZipFile(buf, "w", compression=zipfile.ZIP_DEFLATED) as z:
|
| 492 |
+
for root, _, files in os.walk(base_dir):
|
| 493 |
+
for fn in files:
|
| 494 |
+
full = os.path.join(root, fn)
|
| 495 |
+
rel = os.path.relpath(full, base_dir)
|
| 496 |
+
z.write(full, arcname=rel)
|
| 497 |
+
buf.seek(0)
|
| 498 |
+
|
| 499 |
+
api.upload_file(
|
| 500 |
+
path_or_fileobj=buf,
|
| 501 |
+
path_in_repo=zip_name,
|
| 502 |
+
repo_id=rid,
|
| 503 |
+
repo_type="dataset",
|
| 504 |
+
)
|
| 505 |
+
return {"ok": True, "repo_id": rid, "file": zip_name}
|
| 506 |
|
| 507 |
# ------------------------------------------------------------------------------
|
| 508 |
+
# Gradio UI
|
| 509 |
# ------------------------------------------------------------------------------
|
| 510 |
def _default_two_docs() -> List[Dict[str, str]]:
|
| 511 |
a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3
|
|
|
|
| 514 |
|
| 515 |
async def ui_wipe(project: str):
|
| 516 |
try:
|
| 517 |
+
resp = await wipe(project) # appelle route interne
|
| 518 |
+
return f"✅ Wipe ok — projet {resp['project_id']} vidé."
|
| 519 |
except Exception as e:
|
| 520 |
LOG.exception("wipe UI error")
|
| 521 |
return f"❌ Wipe erreur: {e}"
|
|
|
|
| 544 |
return "⚠️ Renseigne un job_id"
|
| 545 |
try:
|
| 546 |
st = await status(job_id)
|
| 547 |
+
lines = [f"Job {st['job_id']} — stage={st['stage']} files={st['total_files']} chunks={st['total_chunks']} embedded={st['embedded']} indexed={st['indexed']}"]
|
| 548 |
+
lines += st.get("messages", [])[-80:]
|
| 549 |
if st.get("errors"):
|
| 550 |
lines.append("Erreurs:")
|
| 551 |
lines += [f" - {e}" for e in st['errors']]
|
|
|
|
| 555 |
|
| 556 |
async def ui_count(project: str):
|
| 557 |
try:
|
| 558 |
+
data = await coll_count(project)
|
| 559 |
+
return f"📊 Count — project={project} → {data['count']} points" + (f" ({data.get('note')})" if 'note' in data else "")
|
|
|
|
|
|
|
|
|
|
| 560 |
except Exception as e:
|
| 561 |
LOG.exception("count UI error")
|
| 562 |
return f"❌ Count erreur: {e}"
|
|
|
|
| 569 |
return "Aucun résultat."
|
| 570 |
out = []
|
| 571 |
for h in hits:
|
| 572 |
+
out.append(f"{h['score']:.4f} — {h['path']} [chunk {h['chunk']}] — {h['preview']}…")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
return "\n".join(out)
|
| 574 |
except Exception as e:
|
| 575 |
LOG.exception("query UI error")
|
| 576 |
return f"❌ Query erreur: {e}"
|
| 577 |
|
| 578 |
+
async def ui_export(project: str, repo_id: str):
|
| 579 |
try:
|
| 580 |
+
resp = await export_hub(project, repo_id or None)
|
| 581 |
+
return f"📤 Export → dataset repo={resp['repo_id']} file={resp['file']}"
|
| 582 |
except Exception as e:
|
| 583 |
+
LOG.exception("export UI error")
|
| 584 |
+
return f"❌ Export erreur: {e}"
|
| 585 |
|
| 586 |
+
with gr.Blocks(title="Remote Indexer — No-Qdrant (datasets+FAISS)", analytics_enabled=False) as ui:
|
| 587 |
+
gr.Markdown("## 🧪 Remote Indexer — No-Qdrant (datasets+FAISS)\n"
|
| 588 |
"Wipe → Index 2 docs → Status → Count → Query\n"
|
| 589 |
+
f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`) — "
|
| 590 |
+
f"HF token présent: `{'oui' if bool(HF_TOKEN) else 'non'}` — Fallback dummy: `{'on' if EMB_FALLBACK_TO_DUMMY else 'off'}`\n"
|
| 591 |
+
f"- **Data dir**: `{DATA_DIR}` — **Hub export**: `{'on' if (HF_DATASET_REPO and HfApi) else 'off'}`")
|
|
|
|
| 592 |
with gr.Row():
|
| 593 |
project_tb = gr.Textbox(label="Project ID", value="DEEPWEB")
|
| 594 |
jobid_tb = gr.Textbox(label="Job ID", value="", interactive=True)
|
| 595 |
with gr.Row():
|
| 596 |
+
wipe_btn = gr.Button("🧨 Wipe project", variant="stop")
|
| 597 |
index_btn = gr.Button("🚀 Indexer 2 documents", variant="primary")
|
| 598 |
count_btn = gr.Button("📊 Count points", variant="secondary")
|
| 599 |
with gr.Row():
|
|
|
|
| 607 |
status_btn = gr.Button("📡 Status (refresh)")
|
| 608 |
auto_chk = gr.Checkbox(False, label="⏱️ Auto-refresh status (2 s)")
|
| 609 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
with gr.Row():
|
| 611 |
query_tb = gr.Textbox(label="Query text", value="alpha bravo")
|
| 612 |
topk = gr.Slider(1, 20, value=5, step=1, label="top_k")
|
| 613 |
query_btn = gr.Button("🔎 Query")
|
| 614 |
query_out = gr.Textbox(lines=10, label="Résultats Query", interactive=False)
|
| 615 |
|
| 616 |
+
with gr.Row():
|
| 617 |
+
repo_tb = gr.Textbox(label="Hub dataset repo (ex: user/deepweb_vectors)", value=os.getenv("HF_DATASET_REPO", ""))
|
| 618 |
+
export_btn = gr.Button("📤 Export to Hub", variant="secondary")
|
| 619 |
+
|
| 620 |
wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log])
|
| 621 |
index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log, jobid_tb])
|
| 622 |
count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log])
|
|
|
|
| 626 |
timer.tick(ui_status, inputs=[jobid_tb], outputs=[out_log])
|
| 627 |
auto_chk.change(lambda x: gr.update(active=x), inputs=auto_chk, outputs=timer)
|
| 628 |
|
| 629 |
+
query_btn.click(ui_query, inputs=[project_tb, query_tb, topk], outputs=[query_out])
|
| 630 |
+
|
| 631 |
+
export_btn.click(ui_export, inputs=[project_tb, repo_tb], outputs=[out_log])
|
| 632 |
|
| 633 |
+
# Monte l'UI
|
| 634 |
app = gr.mount_gradio_app(fastapi_app, ui, path=UI_PATH)
|
| 635 |
|
| 636 |
if __name__ == "__main__":
|