# -*- coding: utf-8 -*- """ HF Space - Remote Indexer (No-Qdrant) Stockage & recherche vectorielle avec 🤗 datasets + FAISS (local), UI Gradio. Améliorations: - Découpage "fail-safe": si aucun chunk, on prend 1 chunk = tout le texte. - Logs détaillés: taille par fichier, nb chunks par fichier. - UI: bouton "Indexer depuis textarea" pour tester avec 2 gros textes injectés depuis l'UI. ENV: - EMB_PROVIDER ("hf" | "dummy", défaut "hf") - HF_EMBED_MODEL (ex: "BAAI/bge-m3" | "intfloat/e5-base-v2") - HUGGINGFACEHUB_API_TOKEN (requis si EMB_PROVIDER=hf) - EMB_FALLBACK_TO_DUMMY (true/false) - DATA_DIR (auto-pick writable: $DATA_DIR, ./data, /home/user/app/data, /home/user/data, /tmp/data) - HF_DATASET_REPO (optionnel "username/my_proj_vectors") pour export - LOG_LEVEL (DEBUG par défaut) - UI_PATH ("/ui") - PORT (7860) """ from __future__ import annotations import os import io import json import time import uuid import shutil import hashlib import logging import asyncio import threading from typing import List, Dict, Any, Optional, Tuple import numpy as np import httpx import uvicorn import gradio as gr import faiss # type: ignore from pydantic import BaseModel, Field, ValidationError from fastapi import FastAPI, HTTPException, Query from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import RedirectResponse from datasets import Dataset, Features, Sequence, Value, load_from_disk try: from huggingface_hub import HfApi, create_repo except Exception: HfApi = None create_repo = None # ------------------------------------------------------------------------------ # Config & logs # ------------------------------------------------------------------------------ LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG").upper() logging.basicConfig( level=getattr(logging, LOG_LEVEL, logging.DEBUG), format="%(asctime)s - %(levelname)s - %(message)s", ) LOG = logging.getLogger("remote_indexer_noqdrant") EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower() # "hf" | "dummy" HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "intfloat/e5-base-v2") HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "") EMB_FALLBACK_TO_DUMMY = os.getenv("EMB_FALLBACK_TO_DUMMY", "false").lower() in ("1","true","yes","on") UI_PATH = os.getenv("UI_PATH", "/ui") HF_DATASET_REPO = os.getenv("HF_DATASET_REPO", "").strip() # optionnel if EMB_PROVIDER == "hf" and not HF_TOKEN and not EMB_FALLBACK_TO_DUMMY: LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN (pas de fallback). Mets EMB_PROVIDER=dummy ou EMB_FALLBACK_TO_DUMMY=true pour tester.") # ------------------------------------------------------------------------------ # Sélection robuste d'un DATA_DIR writable # ------------------------------------------------------------------------------ def pick_data_dir() -> str: candidates = [ os.getenv("DATA_DIR", "").strip(), os.path.join(os.getcwd(), "data"), "/home/user/app/data", "/home/user/data", "/tmp/data", ] for p in candidates: if not p: continue try: os.makedirs(p, exist_ok=True) testp = os.path.join(p, ".rw_test") with open(testp, "w", encoding="utf-8") as f: f.write("ok") os.remove(testp) LOG.info(f"[DATA_DIR] Utilisation de: {p}") return p except Exception as e: LOG.warning(f"[DATA_DIR] Candidat non writable '{p}': {e}") raise RuntimeError("Aucun répertoire DATA_DIR accessible en écriture.") DATA_DIR = pick_data_dir() # ------------------------------------------------------------------------------ # Modèles Pydantic # ------------------------------------------------------------------------------ class FileItem(BaseModel): path: str text: str class IndexRequest(BaseModel): project_id: str = Field(..., min_length=1) files: List[FileItem] = Field(default_factory=list) chunk_size: int = Field(200, ge=32, le=8192) overlap: int = Field(20, ge=0, le=1024) batch_size: int = Field(32, ge=1, le=1024) store_text: bool = True class QueryRequest(BaseModel): project_id: str text: str top_k: int = Field(5, ge=1, le=100) class JobState(BaseModel): job_id: str project_id: str stage: str = "pending" # pending -> embedding -> indexing -> done/failed total_files: int = 0 total_chunks: int = 0 embedded: int = 0 indexed: int = 0 errors: List[str] = Field(default_factory=list) messages: List[str] = Field(default_factory=list) started_at: float = Field(default_factory=time.time) finished_at: Optional[float] = None def log(self, msg: str) -> None: stamp = time.strftime("%H:%M:%S") line = f"[{stamp}] {msg}" self.messages.append(line) LOG.debug(f"[{self.job_id}] {msg}") JOBS: Dict[str, JobState] = {} DATASETS: Dict[str, Tuple[Dataset, int]] = {} # cache mémoire {project_id: (Dataset, dim)} # ------------------------------------------------------------------------------ # Utils découpage # ------------------------------------------------------------------------------ def chunk_text_fail_safe(text: str, chunk_size: int, overlap: int, min_keep_chars: int = 1) -> List[Tuple[int, int, str]]: """ Découpe le texte en fenêtres chevauchantes. Si aucun chunk "utile" n'est produit mais que le texte contient au moins min_keep_chars non-blanc, on retourne 1 chunk = 100% du texte. """ text = text or "" base = text.strip("\n\r\t ") nclean = len(base) if nclean < min_keep_chars: return [] n = len(text) res: List[Tuple[int, int, str]] = [] i = 0 # Normalisation des paramètres absurdes chunk_size = max(32, int(chunk_size)) overlap = max(0, min(int(overlap), chunk_size - 1)) while i < n: j = min(i + chunk_size, n) chunk = text[i:j] if len(chunk.strip()) >= min_keep_chars: res.append((i, j, chunk)) if j == n: break i = j - overlap if i <= 0: i = j if not res: # fail-safe : 1 chunk couvrant tout le texte res = [(0, n, text)] return res def project_paths(project_id: str) -> Dict[str, str]: base = os.path.join(DATA_DIR, project_id) return { "base": base, "ds_dir": os.path.join(base, "dataset"), "faiss_dir": os.path.join(base, "faiss"), "faiss_file": os.path.join(base, "faiss", "emb.faiss"), "meta_file": os.path.join(base, "meta.json"), } def save_meta(meta_path: str, data: Dict[str, Any]) -> None: os.makedirs(os.path.dirname(meta_path), exist_ok=True) with open(meta_path, "w", encoding="utf-8") as f: json.dump(data, f, indent=2, ensure_ascii=False) def load_meta(meta_path: str) -> Dict[str, Any]: if not os.path.exists(meta_path): return {} try: with open(meta_path, "r", encoding="utf-8") as f: return json.load(f) except Exception: return {} # ------------------------------------------------------------------------------ # Embeddings (HF Inference ou dummy) # ------------------------------------------------------------------------------ def l2_normalize(vec: List[float]) -> List[float]: arr = np.array(vec, dtype=np.float32) n = float(np.linalg.norm(arr)) if n > 0: arr = arr / n return arr.astype(np.float32).tolist() def flatten_any(x: Any) -> List[float]: if isinstance(x, (list, tuple)): if len(x) > 0 and isinstance(x[0], (list, tuple)): return flatten_any(x[0]) return list(map(float, x)) raise ValueError("Embedding vector mal formé") def _maybe_prefix_for_model(texts: List[str], model_name: str) -> List[str]: m = (model_name or "").lower() if "e5" in m: return [("query: " + t) for t in texts] return texts async def embed_hf(client: httpx.AsyncClient, texts: List[str], model: str = HF_EMBED_MODEL, token: str = HF_TOKEN) -> List[List[float]]: if not token: raise HTTPException(status_code=400, detail="HUGGINGFACEHUB_API_TOKEN manquant pour EMB_PROVIDER=hf") url = f"https://api-inference.huggingface.co/models/{model}" headers = {"Authorization": f"Bearer {token}"} inputs = _maybe_prefix_for_model(texts, model) payload = {"inputs": inputs, "options": {"wait_for_model": True}} LOG.debug(f"HF POST model={model} n_texts={len(texts)}") r = await client.post(url, headers=headers, json=payload, timeout=180) if r.status_code != 200: detail = r.text LOG.error(f"HF Inference error {r.status_code}: {detail[:400]}") raise HTTPException(status_code=502, detail=f"HF Inference error {r.status_code}: {detail}") data = r.json() embeddings: List[List[float]] = [] if isinstance(data, list): for row in data: vec = flatten_any(row) embeddings.append(l2_normalize(vec)) else: vec = flatten_any(data) embeddings.append(l2_normalize(vec)) return embeddings def embed_dummy(texts: List[str], dim: int = 128) -> List[List[float]]: out: List[List[float]] = [] for t in texts: h = hashlib.sha256(t.encode("utf-8")).digest() arr = np.frombuffer((h * ((dim // len(h)) + 1))[:dim], dtype=np.uint8).astype(np.float32) arr = (arr - 127.5) / 127.5 arr = arr / (np.linalg.norm(arr) + 1e-9) out.append(arr.astype(np.float32).tolist()) return out async def embed_texts(client: httpx.AsyncClient, texts: List[str]) -> List[List[float]]: if EMB_PROVIDER == "hf": try: return await embed_hf(client, texts) except Exception as e: if EMB_FALLBACK_TO_DUMMY: LOG.warning(f"Fallback embeddings → dummy (cause: {e})") return embed_dummy(texts, dim=128) raise return embed_dummy(texts, dim=128) # ------------------------------------------------------------------------------ # Indexation (datasets + FAISS) # ------------------------------------------------------------------------------ async def build_dataset_with_faiss(job: JobState, req: IndexRequest) -> None: """ Construit un dataset HuggingFace avec colonnes: - path (str), text (str), chunk (int), start (int), end (int), embedding (float32[]) Ajoute un index FAISS (Inner Product) et persiste sur disque. """ try: job.stage = "embedding" job.total_files = len(req.files) job.log( f"Index start project={req.project_id} files={len(req.files)} " f"chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text} " f"provider={EMB_PROVIDER} model={HF_EMBED_MODEL}" ) # Chunking + logs par fichier records: List[Dict[str, Any]] = [] for f in req.files: t = f.text or "" tlen = len(t) job.log(f"{f.path}: len(text)={tlen}") chunks = chunk_text_fail_safe(t, req.chunk_size, req.overlap, min_keep_chars=1) job.log(f"{f.path}: chunks créés={len(chunks)}") for idx, (start, end, ch) in enumerate(chunks): payload = {"path": f.path, "chunk": idx, "start": start, "end": end} payload["text"] = ch if req.store_text else "" payload["raw"] = ch records.append(payload) job.total_chunks = len(records) job.log(f"Total chunks = {job.total_chunks}") if job.total_chunks == 0: job.stage = "failed" job.errors.append("Aucun chunk à indexer (textes vides ?)") job.finished_at = time.time() return # Embeddings par batch async with httpx.AsyncClient(timeout=180) as client: all_vecs: List[List[float]] = [] B = max(8, min(128, req.batch_size * 2)) i = 0 while i < len(records): sub = records[i : i + B] texts = [r["raw"] for r in sub] vecs = await embed_texts(client, texts) if len(vecs) != len(sub): raise HTTPException(status_code=500, detail="Embedding batch size mismatch") all_vecs.extend(vecs) job.embedded += len(vecs) job.log(f"Embeddings {job.embedded}/{job.total_chunks}") i += B vec_dim = len(all_vecs[0]) job.log(f"Embeddings dim={vec_dim}") # Dataset columns paths = [r["path"] for r in records] chunks = [int(r["chunk"]) for r in records] starts = [int(r["start"]) for r in records] ends = [int(r["end"]) for r in records] texts = [r.get("text", "") for r in records] features = Features({ "path": Value("string"), "chunk": Value("int32"), "start": Value("int32"), "end": Value("int32"), "text": Value("string"), "embedding": Sequence(Value("float32")), }) ds = Dataset.from_dict( { "path": paths, "chunk": chunks, "start": starts, "end": ends, "text": texts, "embedding": [np.array(v, dtype=np.float32) for v in all_vecs], }, features=features, ) # Index FAISS (Inner Product ≈ cosine après normalisation) job.stage = "indexing" ds.add_faiss_index(column="embedding", metric_type=faiss.METRIC_INNER_PRODUCT) job.indexed = ds.num_rows job.log(f"FAISS index ajouté ({ds.num_rows} points)") # Persistance p = project_paths(req.project_id) os.makedirs(p["faiss_dir"], exist_ok=True) ds.save_to_disk(p["ds_dir"]) ds.save_faiss_index("embedding", p["faiss_file"]) save_meta(p["meta_file"], {"dim": vec_dim, "rows": ds.num_rows, "model": HF_EMBED_MODEL, "ts": time.time()}) DATASETS[req.project_id] = (ds, vec_dim) job.stage = "done" job.finished_at = time.time() job.log(f"Dataset sauvegardé dans {p['ds_dir']}, index FAISS → {p['faiss_file']}") except Exception as e: job.stage = "failed" job.errors.append(str(e)) job.finished_at = time.time() job.log(f"❌ Exception: {e}") def _run_job_in_thread(job: JobState, req: IndexRequest) -> None: def _runner(): try: asyncio.run(build_dataset_with_faiss(job, req)) except Exception as e: job.stage = "failed" job.errors.append(str(e)) job.finished_at = time.time() job.log(f"❌ Thread exception: {e}") t = threading.Thread(target=_runner, daemon=True) t.start() def create_and_start_job(req: IndexRequest) -> JobState: job_id = uuid.uuid4().hex[:12] job = JobState(job_id=job_id, project_id=req.project_id) JOBS[job_id] = job job.log(f"Job {job_id} créé pour project {req.project_id}") _run_job_in_thread(job, req) return job # ------------------------------------------------------------------------------ # Chargement / Query helpers # ------------------------------------------------------------------------------ def ensure_loaded(project_id: str) -> Tuple[Dataset, int]: if project_id in DATASETS: return DATASETS[project_id] p = project_paths(project_id) if not os.path.exists(p["ds_dir"]): raise HTTPException(status_code=404, detail=f"Dataset absent pour projet {project_id}") ds = load_from_disk(p["ds_dir"]) if os.path.exists(p["faiss_file"]): ds.load_faiss_index("embedding", p["faiss_file"]) meta = load_meta(p["meta_file"]) vec_dim = int(meta.get("dim", 0)) or len(ds[0]["embedding"]) DATASETS[project_id] = (ds, vec_dim) return ds, vec_dim async def embed_query(text: str) -> List[float]: async with httpx.AsyncClient(timeout=60) as client: vec = (await embed_texts(client, [text]))[0] return vec # ------------------------------------------------------------------------------ # FastAPI app # ------------------------------------------------------------------------------ fastapi_app = FastAPI(title="Remote Indexer - NoQdrant (Datasets+FAISS)") fastapi_app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"] ) @fastapi_app.get("/health") async def health(): return {"status": "ok", "emb_provider": EMB_PROVIDER, "model": HF_EMBED_MODEL, "data_dir": DATA_DIR} @fastapi_app.get("/api") async def api_info(): return { "ok": True, "service": "remote-indexer-noqdrant", "emb_provider": EMB_PROVIDER, "hf_model": HF_EMBED_MODEL, "fallback_to_dummy": EMB_FALLBACK_TO_DUMMY, "data_dir": DATA_DIR, "ui_path": UI_PATH, "hub_export_enabled": bool(HF_DATASET_REPO and HfApi), } @fastapi_app.get("/") async def root_redirect(): return RedirectResponse(url=UI_PATH, status_code=307) @fastapi_app.post("/wipe") async def wipe(project_id: str = Query(..., min_length=1)): p = project_paths(project_id) if os.path.exists(p["base"]): shutil.rmtree(p["base"], ignore_errors=True) if project_id in DATASETS: DATASETS.pop(project_id, None) return {"ok": True, "project_id": project_id, "removed": True} @fastapi_app.post("/index") async def index(req: IndexRequest): job = create_and_start_job(req) return {"job_id": job.job_id, "project_id": job.project_id} @fastapi_app.get("/status/{job_id}") async def status(job_id: str): job = JOBS.get(job_id) if not job: raise HTTPException(status_code=404, detail="job_id inconnu") return job.model_dump() @fastapi_app.get("/collections/{project_id}/count") async def coll_count(project_id: str): try: ds, _ = ensure_loaded(project_id) return {"project_id": project_id, "count": ds.num_rows} except Exception as e: return {"project_id": project_id, "count": 0, "note": f"{e}"} @fastapi_app.post("/query") async def query(req: QueryRequest): ds, vec_dim = ensure_loaded(req.project_id) qvec = await embed_query(req.text) if len(qvec) != vec_dim: raise HTTPException(status_code=400, detail=f"Dim requête {len(qvec)} ≠ dim index {vec_dim}") scores, ex = ds.get_nearest_examples("embedding", np.array(qvec, dtype=np.float32), k=req.top_k) results = [] for s, path, chunk, text in zip(scores, ex["path"], ex["chunk"], ex["text"]): preview = ((text or "")[:160]).replace("\n", " ") results.append({"score": float(s), "path": path, "chunk": int(chunk), "preview": preview}) return {"result": results, "k": req.top_k} @fastapi_app.post("/export_hub") async def export_hub(project_id: str = Query(..., min_length=1), repo_id: Optional[str] = None): if not HfApi or not HF_TOKEN: raise HTTPException(status_code=400, detail="huggingface_hub non dispo ou HF token absent.") p = project_paths(project_id) if not os.path.exists(p["ds_dir"]): raise HTTPException(status_code=404, detail="Aucun dataset local à exporter.") rid = (repo_id or HF_DATASET_REPO or "").strip() if not rid: raise HTTPException(status_code=400, detail="repo_id requis (ou HF_DATASET_REPO).") api = HfApi(token=HF_TOKEN) try: create_repo(rid, repo_type="dataset", exist_ok=True, token=HF_TOKEN) except Exception: pass buf = io.BytesIO() base_dir = p["base"] zip_name = f"{project_id}_vectors.zip" import zipfile with zipfile.ZipFile(buf, "w", compression=zipfile.ZIP_DEFLATED) as z: for root, _, files in os.walk(base_dir): for fn in files: full = os.path.join(root, fn) rel = os.path.relpath(full, base_dir) z.write(full, arcname=rel) buf.seek(0) api.upload_file( path_or_fileobj=buf, path_in_repo=zip_name, repo_id=rid, repo_type="dataset", ) return {"ok": True, "repo_id": rid, "file": zip_name} # ------------------------------------------------------------------------------ # Gradio UI # ------------------------------------------------------------------------------ def _default_two_docs() -> List[Dict[str, str]]: a = ("Alpha bravo charlie delta echo foxtrot golf hotel india juliett kilo lima mike november oscar papa " "quebec romeo sierra tango uniform victor whiskey xray yankee zulu. ") * 5 b = ("Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet " "dolore magna aliquam erat volutpat. ") * 5 return [{"path": "a.txt", "text": a}, {"path": "b.txt", "text": b}] async def ui_wipe(project: str): try: resp = await wipe(project) return f"✅ Wipe ok — projet {resp['project_id']} vidé." except Exception as e: LOG.exception("wipe UI error") return f"❌ Wipe erreur: {e}" async def ui_index_sample(project: str, chunk_size: int, overlap: int, batch_size: int, store_text: bool): files = _default_two_docs() req = IndexRequest( project_id=project, files=[FileItem(**f) for f in files], chunk_size=chunk_size, overlap=overlap, batch_size=batch_size, store_text=store_text, ) try: job = create_and_start_job(req) return f"🚀 Job lancé: {job.job_id}", job.job_id except ValidationError as ve: return f"❌ Payload invalide: {ve}", "" except Exception as e: LOG.exception("index UI error") return f"❌ Index erreur: {e}", "" async def ui_index_from_textarea(project: str, text1: str, text2: str, chunk_size: int, overlap: int, batch_size: int, store_text: bool): files = [ {"path": "ui_text_1.txt", "text": text1 or ""}, {"path": "ui_text_2.txt", "text": text2 or ""}, ] req = IndexRequest( project_id=project, files=[FileItem(**f) for f in files], chunk_size=chunk_size, overlap=overlap, batch_size=batch_size, store_text=store_text, ) try: job = create_and_start_job(req) return f"🚀 Job (textarea) lancé: {job.job_id}", job.job_id except Exception as e: LOG.exception("index-from-text UI error") return f"❌ Index (textarea) erreur: {e}", "" async def ui_status(job_id: str): if not job_id.strip(): return "⚠️ Renseigne un job_id" try: st = await status(job_id) lines = [f"Job {st['job_id']} — stage={st['stage']} files={st['total_files']} chunks={st['total_chunks']} embedded={st['embedded']} indexed={st['indexed']}"] lines += st.get("messages", [])[-100:] if st.get("errors"): lines.append("Erreurs:") lines += [f" - {e}" for e in st['errors']] return "\n".join(lines) except Exception as e: return f"❌ Status erreur: {e}" async def ui_count(project: str): try: data = await coll_count(project) return f"📊 Count — project={project} → {data['count']} points" + (f" ({data.get('note')})" if 'note' in data else "") except Exception as e: LOG.exception("count UI error") return f"❌ Count erreur: {e}" async def ui_query(project: str, text: str, topk: int): try: data = await query(QueryRequest(project_id=project, text=text, top_k=topk)) hits = data.get("result", []) if not hits: return "Aucun résultat." out = [] for h in hits: out.append(f"{h['score']:.4f} — {h['path']} [chunk {h['chunk']}] — {h['preview']}…") return "\n".join(out) except Exception as e: LOG.exception("query UI error") return f"❌ Query erreur: {e}" async def ui_export(project: str, repo_id: str): try: resp = await export_hub(project, repo_id or None) return f"📤 Export → dataset repo={resp['repo_id']} file={resp['file']}" except Exception as e: LOG.exception("export UI error") return f"❌ Export erreur: {e}" with gr.Blocks(title="Remote Indexer — No-Qdrant (datasets+FAISS)", analytics_enabled=False) as ui: gr.Markdown("## 🧪 Remote Indexer — No-Qdrant (datasets+FAISS)\n" "Wipe → Index 2 docs → Status → Count → Query\n" f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`) — " f"HF token présent: `{'oui' if bool(HF_TOKEN) else 'non'}` — Fallback dummy: `{'on' if EMB_FALLBACK_TO_DUMMY else 'off'}`\n" f"- **Data dir**: `{DATA_DIR}` — **Hub export**: `{'on' if (HF_DATASET_REPO and HfApi) else 'off'}`") with gr.Row(): project_tb = gr.Textbox(label="Project ID", value="DEEPWEB") jobid_tb = gr.Textbox(label="Job ID", value="", interactive=True) with gr.Row(): wipe_btn = gr.Button("🧨 Wipe project", variant="stop") index_btn = gr.Button("🚀 Indexer 2 documents (démo)", variant="primary") count_btn = gr.Button("📊 Count points", variant="secondary") with gr.Row(): chunk_size = gr.Slider(64, 1024, value=200, step=8, label="chunk_size") overlap = gr.Slider(0, 256, value=20, step=2, label="overlap") batch_size = gr.Slider(1, 128, value=32, step=1, label="batch_size") store_text = gr.Checkbox(value=True, label="store_text (payload)") out_log = gr.Textbox(lines=18, label="Logs / Résultats", interactive=False) with gr.Accordion("Indexer depuis textarea (bypass fichiers)", open=False): txt1 = gr.Textbox(label="Texte 1", value="Ceci est un texte de test assez long pour produire des chunks. " * 10, lines=6) txt2 = gr.Textbox(label="Texte 2", value="Deuxième texte de test pour vérifier l'indexation et la recherche. " * 10, lines=6) index_txt_btn = gr.Button("📝 Indexer ces 2 textes") with gr.Row(): status_btn = gr.Button("📡 Status (refresh)") auto_chk = gr.Checkbox(False, label="⏱️ Auto-refresh status (2 s)") with gr.Row(): query_tb = gr.Textbox(label="Query text", value="alpha bravo") topk = gr.Slider(1, 20, value=5, step=1, label="top_k") query_btn = gr.Button("🔎 Query") query_out = gr.Textbox(lines=10, label="Résultats Query", interactive=False) with gr.Row(): repo_tb = gr.Textbox(label="Hub dataset repo (ex: user/deepweb_vectors)", value=os.getenv("HF_DATASET_REPO", "")) export_btn = gr.Button("📤 Export to Hub", variant="secondary") wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log]) index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log, jobid_tb]) index_txt_btn.click(ui_index_from_textarea, inputs=[project_tb, txt1, txt2, chunk_size, overlap, batch_size, store_text], outputs=[out_log, jobid_tb]) count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log]) status_btn.click(ui_status, inputs=[jobid_tb], outputs=[out_log]) timer = gr.Timer(2.0, active=False) timer.tick(ui_status, inputs=[jobid_tb], outputs=[out_log]) auto_chk.change(lambda x: gr.update(active=x), inputs=auto_chk, outputs=timer) query_btn.click(ui_query, inputs=[project_tb, query_tb, topk], outputs=[query_out]) export_btn.click(ui_export, inputs=[project_tb, repo_tb], outputs=[out_log]) # Monte l'UI app = gr.mount_gradio_app(fastapi_app, ui, path=UI_PATH) if __name__ == "__main__": port = int(os.getenv("PORT", "7860")) LOG.info(f"Démarrage Uvicorn sur 0.0.0.0:{port} (UI_PATH={UI_PATH})") uvicorn.run(app, host="0.0.0.0", port=port)