# -*- coding: utf-8 -*- """ HF Space - main.py de substitution pour tests Qdrant / indexation minimale Endpoints: - POST /wipe?project_id=XXX - POST /index - GET /status/{job_id} - GET /collections/{project_id}/count - POST /query - GET /health <-- healthcheck OK UI Gradio montée sur "/" pour tests sans console. ENV attendues : - QDRANT_URL : https://...qdrant.io:6333 - QDRANT_API_KEY : clé Qdrant - COLLECTION_PREFIX : "proj_" par défaut - EMB_PROVIDER : "hf" (défaut) ou "dummy" - HF_EMBED_MODEL : "BAAI/bge-m3" par défaut - HUGGINGFACEHUB_API_TOKEN (si EMB_PROVIDER=hf) - LOG_LEVEL : DEBUG (défaut) - PORT : 7860 (fourni par HF) Dépendances suggérées : fastapi>=0.111, uvicorn>=0.30, httpx>=0.27, pydantic>=2.7, gradio>=4.43, numpy>=2.0 """ from __future__ import annotations import os import time import uuid import hashlib import logging import asyncio from typing import List, Dict, Any, Optional, Tuple import numpy as np import httpx import uvicorn from pydantic import BaseModel, Field, ValidationError from fastapi import FastAPI, HTTPException, Query from fastapi.middleware.cors import CORSMiddleware import gradio as gr # ------------------------------------------------------------------------------ # Configuration & logs # ------------------------------------------------------------------------------ LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG").upper() logging.basicConfig( level=getattr(logging, LOG_LEVEL, logging.DEBUG), format="%(asctime)s - %(levelname)s - %(message)s", ) LOG = logging.getLogger("remote_indexer_min") QDRANT_URL = os.getenv("QDRANT_URL", "").rstrip("/") QDRANT_API_KEY = os.getenv("QDRANT_API_KEY", "") COLLECTION_PREFIX = os.getenv("COLLECTION_PREFIX", "proj_").strip() or "proj_" EMB_PROVIDER = os.getenv("EMB_PROVIDER", "hf").lower() # "hf" | "dummy" HF_EMBED_MODEL = os.getenv("HF_EMBED_MODEL", "BAAI/bge-m3") HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "") if not QDRANT_URL or not QDRANT_API_KEY: LOG.warning("QDRANT_URL / QDRANT_API_KEY non fournis : l'upsert échouera.") if EMB_PROVIDER == "hf" and not HF_TOKEN: LOG.warning("EMB_PROVIDER=hf sans HUGGINGFACEHUB_API_TOKEN. Utilise EMB_PROVIDER=dummy pour tester sans token.") # ------------------------------------------------------------------------------ # Schémas Pydantic # ------------------------------------------------------------------------------ class FileItem(BaseModel): path: str text: str class IndexRequest(BaseModel): project_id: str = Field(..., min_length=1) files: List[FileItem] = Field(default_factory=list) chunk_size: int = Field(200, ge=64, le=4096) overlap: int = Field(20, ge=0, le=512) batch_size: int = Field(32, ge=1, le=1024) store_text: bool = True class QueryRequest(BaseModel): project_id: str text: str top_k: int = Field(5, ge=1, le=100) # ------------------------------------------------------------------------------ # Job store (en mémoire) # ------------------------------------------------------------------------------ class JobState(BaseModel): job_id: str project_id: str stage: str = "pending" # pending -> embedding -> upserting -> done/failed total_files: int = 0 total_chunks: int = 0 embedded: int = 0 upserted: int = 0 errors: List[str] = Field(default_factory=list) messages: List[str] = Field(default_factory=list) started_at: float = Field(default_factory=time.time) finished_at: Optional[float] = None def log(self, msg: str) -> None: stamp = time.strftime("%H:%M:%S") line = f"[{stamp}] {msg}" self.messages.append(line) LOG.debug(f"[{self.job_id}] {msg}") JOBS: Dict[str, JobState] = {} # ------------------------------------------------------------------------------ # Utilitaires # ------------------------------------------------------------------------------ def hash8(s: str) -> str: return hashlib.sha256(s.encode("utf-8")).hexdigest()[:16] def l2_normalize(vec: List[float]) -> List[float]: arr = np.array(vec, dtype=np.float32) n = float(np.linalg.norm(arr)) if n > 0: arr = arr / n return arr.astype(np.float32).tolist() def flatten_any(x: Any) -> List[float]: """Aplatis potentiels [[...]] ou [[[...]]] en 1D.""" if isinstance(x, (list, tuple)): if len(x) > 0 and isinstance(x[0], (list, tuple)): return flatten_any(x[0]) return list(map(float, x)) raise ValueError("Embedding vector mal formé") def chunk_text(text: str, chunk_size: int, overlap: int) -> List[Tuple[int, int, str]]: """Retourne [(start, end, chunk)] et ignore les fragments < 30 chars.""" text = text or "" if not text.strip(): return [] res = [] n = len(text) i = 0 while i < n: j = min(i + chunk_size, n) chunk = text[i:j] if len(chunk.strip()) >= 30: res.append((i, j, chunk)) i = j - overlap if i <= 0: i = j return res async def ensure_collection(client: httpx.AsyncClient, coll: str, vector_size: int) -> None: """Crée la collection Qdrant (distance=Cosine), ou la recrée si dim mismatch.""" url = f"{QDRANT_URL}/collections/{coll}" r = await client.get(url, headers={"api-key": QDRANT_API_KEY}, timeout=20) recreate = False if r.status_code == 200: data = r.json() existing_size = data.get("result", {}).get("vectors", {}).get("size") if existing_size and int(existing_size) != int(vector_size): LOG.warning(f"Collection {coll} dim={existing_size} ≠ attendu {vector_size} → recréation") await client.delete(url, headers={"api-key": QDRANT_API_KEY}, timeout=20) recreate = True else: LOG.debug(f"Collection {coll} existante (dim={existing_size})") if r.status_code != 200 or recreate: body = {"vectors": {"size": vector_size, "distance": "Cosine"}} r2 = await client.put(url, headers={"api-key": QDRANT_API_KEY}, json=body, timeout=30) if r2.status_code not in (200, 201): raise HTTPException(status_code=500, detail=f"Qdrant PUT collection a échoué: {r2.text}") async def qdrant_upsert(client: httpx.AsyncClient, coll: str, points: List[Dict[str, Any]]) -> int: if not points: return 0 url = f"{QDRANT_URL}/collections/{coll}/points?wait=true" body = {"points": points} r = await client.put(url, headers={"api-key": QDRANT_API_KEY}, json=body, timeout=60) if r.status_code not in (200, 202): raise HTTPException(status_code=500, detail=f"Qdrant upsert échoué: {r.text}") return len(points) async def qdrant_count(client: httpx.AsyncClient, coll: str) -> int: url = f"{QDRANT_URL}/collections/{coll}/points/count" r = await client.post(url, headers={"api-key": QDRANT_API_KEY}, json={"exact": True}, timeout=20) if r.status_code != 200: raise HTTPException(status_code=500, detail=f"Qdrant count échoué: {r.text}") return int(r.json().get("result", {}).get("count", 0)) async def qdrant_search(client: httpx.AsyncClient, coll: str, vector: List[float], limit: int = 5) -> Dict[str, Any]: url = f"{QDRANT_URL}/collections/{coll}/points/search" r = await client.post( url, headers={"api-key": QDRANT_API_KEY}, json={"vector": vector, "limit": limit, "with_payload": True}, timeout=30, ) if r.status_code != 200: raise HTTPException(status_code=500, detail=f"Qdrant search échoué: {r.text}") return r.json() # ------------------------------------------------------------------------------ # Embeddings (HF Inference ou dummy) # ------------------------------------------------------------------------------ async def embed_hf(client: httpx.AsyncClient, texts: List[str], model: str = HF_EMBED_MODEL, token: str = HF_TOKEN) -> List[List[float]]: if not token: raise HTTPException(status_code=400, detail="HUGGINGFACEHUB_API_TOKEN manquant pour EMB_PROVIDER=hf") url = f"https://api-inference.huggingface.co/models/{model}" headers = {"Authorization": f"Bearer {token}"} payload = {"inputs": texts, "options": {"wait_for_model": True}} r = await client.post(url, headers=headers, json=payload, timeout=120) if r.status_code != 200: raise HTTPException(status_code=502, detail=f"HF Inference error: {r.text}") data = r.json() embeddings: List[List[float]] = [] if isinstance(data, list): for row in data: vec = flatten_any(row) embeddings.append(l2_normalize(vec)) else: vec = flatten_any(data) embeddings.append(l2_normalize(vec)) return embeddings def embed_dummy(texts: List[str], dim: int = 128) -> List[List[float]]: out: List[List[float]] = [] for t in texts: h = hashlib.sha256(t.encode("utf-8")).digest() arr = np.frombuffer((h * ((dim // len(h)) + 1))[:dim], dtype=np.uint8).astype(np.float32) arr = (arr - 127.5) / 127.5 arr = arr / (np.linalg.norm(arr) + 1e-9) out.append(arr.astype(np.float32).tolist()) return out async def embed_texts(client: httpx.AsyncClient, texts: List[str]) -> List[List[float]]: if EMB_PROVIDER == "hf": return await embed_hf(client, texts) return embed_dummy(texts, dim=128) # ------------------------------------------------------------------------------ # Pipeline d'indexation # ------------------------------------------------------------------------------ async def run_index_job(job: JobState, req: IndexRequest) -> None: job.stage = "embedding" job.total_files = len(req.files) job.log(f"Index start project={req.project_id} files={len(req.files)} chunk_size={req.chunk_size} overlap={req.overlap} batch_size={req.batch_size} store_text={req.store_text}") # Dédup global par hash du texte de fichier file_hashes = [hash8(f.text) for f in req.files] uniq = len(set(file_hashes)) if uniq != len(file_hashes): job.log(f"Attention: {len(file_hashes)-uniq} fichier(s) ont un texte identique (hash dupliqué).") # Chunking records: List[Dict[str, Any]] = [] for f in req.files: chunks = chunk_text(f.text, req.chunk_size, req.overlap) if not chunks: job.log(f"{f.path}: 0 chunk (trop court ou vide)") for idx, (start, end, ch) in enumerate(chunks): payload = {"path": f.path, "chunk": idx, "start": start, "end": end} if req.store_text: payload["text"] = ch records.append({"payload": payload, "raw": ch}) job.total_chunks = len(records) job.log(f"Total chunks = {job.total_chunks}") if job.total_chunks == 0: job.stage = "failed" job.errors.append("Aucun chunk à indexer.") job.finished_at = time.time() return async with httpx.AsyncClient(timeout=120) as client: # Warmup dim warmup_vec = (await embed_texts(client, [records[0]["raw"]]))[0] vec_dim = len(warmup_vec) job.log(f"Warmup embeddings dim={vec_dim} provider={EMB_PROVIDER}") # Collection Qdrant coll = f"{COLLECTION_PREFIX}{req.project_id}" await ensure_collection(client, coll, vector_size=vec_dim) job.stage = "upserting" batch_points: List[Dict[str, Any]] = [] async def flush_batch(): nonlocal batch_points if not batch_points: return 0 added = await qdrant_upsert(client, coll, batch_points) job.upserted += added job.log(f"+{added} points upsert (total={job.upserted})") batch_points = [] return added EMB_BATCH = max(8, min(64, req.batch_size * 2)) i = 0 while i < len(records): sub = records[i : i + EMB_BATCH] texts = [r["raw"] for r in sub] vecs = await embed_texts(client, texts) if len(vecs) != len(sub): raise HTTPException(status_code=500, detail="Embedding batch size mismatch") job.embedded += len(vecs) for r, v in zip(sub, vecs): point = {"id": str(uuid.uuid4()), "vector": v, "payload": r["payload"]} batch_points.append(point) if len(batch_points) >= req.batch_size: await flush_batch() i += EMB_BATCH await flush_batch() job.stage = "done" job.finished_at = time.time() job.log("Index job terminé.") # ------------------------------------------------------------------------------ # FastAPI app + endpoints # ------------------------------------------------------------------------------ fastapi_app = FastAPI(title="Remote Indexer - Minimal Test Space") fastapi_app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) @fastapi_app.get("/health") async def health(): return {"status": "ok"} @fastapi_app.get("/") async def root(): return {"ok": True, "service": "remote-indexer-min", "qdrant": bool(QDRANT_URL), "emb_provider": EMB_PROVIDER} @fastapi_app.post("/wipe") async def wipe(project_id: str = Query(..., min_length=1)): if not QDRANT_URL or not QDRANT_API_KEY: raise HTTPException(status_code=400, detail="QDRANT_URL / QDRANT_API_KEY requis") coll = f"{COLLECTION_PREFIX}{project_id}" async with httpx.AsyncClient() as client: r = await client.delete(f"{QDRANT_URL}/collections/{coll}", headers={"api-key": QDRANT_API_KEY}, timeout=30) if r.status_code not in (200, 202, 404): raise HTTPException(status_code=500, detail=f"Echec wipe: {r.text}") return {"ok": True, "collection": coll, "wiped": True} @fastapi_app.post("/index") async def index(req: IndexRequest): if not QDRANT_URL or not QDRANT_API_KEY: raise HTTPException(status_code=400, detail="QDRANT_URL / QDRANT_API_KEY requis") job_id = uuid.uuid4().hex[:12] job = JobState(job_id=job_id, project_id=req.project_id) JOBS[job_id] = job asyncio.create_task(run_index_job(job, req)) job.log(f"Job {job_id} créé pour project {req.project_id}") return {"job_id": job_id, "project_id": req.project_id} @fastapi_app.get("/status/{job_id}") async def status(job_id: str): job = JOBS.get(job_id) if not job: raise HTTPException(status_code=404, detail="job_id inconnu") return job.model_dump() @fastapi_app.get("/collections/{project_id}/count") async def coll_count(project_id: str): if not QDRANT_URL or not QDRANT_API_KEY: raise HTTPException(status_code=400, detail="QDRANT_URL / QDRANT_API_KEY requis") coll = f"{COLLECTION_PREFIX}{project_id}" async with httpx.AsyncClient() as client: cnt = await qdrant_count(client, coll) return {"project_id": project_id, "collection": coll, "count": cnt} @fastapi_app.post("/query") async def query(req: QueryRequest): if not QDRANT_URL or not QDRANT_API_KEY: raise HTTPException(status_code=400, detail="QDRANT_URL / QDRANT_API_KEY requis") coll = f"{COLLECTION_PREFIX}{req.project_id}" async with httpx.AsyncClient() as client: vec = (await embed_texts(client, [req.text]))[0] data = await qdrant_search(client, coll, vec, limit=req.top_k) return data # ------------------------------------------------------------------------------ # Gradio UI # ------------------------------------------------------------------------------ def _default_two_docs() -> List[Dict[str, str]]: a = "Alpha bravo charlie delta echo foxtrot golf hotel india. " * 3 b = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy. " * 3 return [{"path": "a.txt", "text": a}, {"path": "b.txt", "text": b}] async def ui_wipe(project: str): try: resp = await wipe(project) # appelle la route interne return f"✅ Wipe ok — collection {resp['collection']} supprimée." except Exception as e: LOG.exception("wipe UI error") return f"❌ Wipe erreur: {e}" async def ui_index_sample(project: str, chunk_size: int, overlap: int, batch_size: int, store_text: bool): files = _default_two_docs() req = IndexRequest( project_id=project, files=[FileItem(**f) for f in files], chunk_size=chunk_size, overlap=overlap, batch_size=batch_size, store_text=store_text, ) try: data = await index(req) job_id = data["job_id"] return f"🚀 Job lancé: {job_id}" except ValidationError as ve: return f"❌ Payload invalide: {ve}" except Exception as e: LOG.exception("index UI error") return f"❌ Index erreur: {e}" async def ui_status(job_id: str): if not job_id.strip(): return "⚠️ Renseigne un job_id" try: st = await status(job_id) lines = [f"Job {st['job_id']} — stage={st['stage']} files={st['total_files']} chunks={st['total_chunks']} embedded={st['embedded']} upserted={st['upserted']}"] lines += st.get("messages", [])[-50:] if st.get("errors"): lines.append("Erreurs:") lines += [f" - {e}" for e in st["errors"]] return "\n".join(lines) except Exception as e: return f"❌ Status erreur: {e}" async def ui_count(project: str): try: resp = await coll_count(project) return f"📊 Count — collection={resp['collection']} → {resp['count']} points" except Exception as e: LOG.exception("count UI error") return f"❌ Count erreur: {e}" async def ui_query(project: str, text: str, topk: int): try: data = await query(QueryRequest(project_id=project, text=text, top_k=topk)) hits = data.get("result", []) if not hits: return "Aucun résultat." out = [] for h in hits: score = h.get("score") payload = h.get("payload", {}) path = payload.get("path") chunk = payload.get("chunk") preview = (payload.get("text") or "")[:120].replace("\n", " ") out.append(f"{score:.4f} — {path} [chunk {chunk}] — {preview}…") return "\n".join(out) except Exception as e: LOG.exception("query UI error") return f"❌ Query erreur: {e}" with gr.Blocks(title="Remote Indexer - Minimal Test", analytics_enabled=False) as ui: gr.Markdown("## 🔬 Remote Indexer — Tests sans console\n" "Wipe → Index 2 docs → Status → Count → Query\n" f"- **Embeddings**: `{EMB_PROVIDER}` (model: `{HF_EMBED_MODEL}`)\n" f"- **Qdrant**: `{'OK' if QDRANT_URL else 'ABSENT'}`\n" "Astuce: si pas de token HF, mets `EMB_PROVIDER=dummy`.") with gr.Row(): project_tb = gr.Textbox(label="Project ID", value="DEEPWEB") jobid_tb = gr.Textbox(label="Job ID (pour Status)", value="", interactive=True) with gr.Row(): wipe_btn = gr.Button("🧨 Wipe collection", variant="stop") index_btn = gr.Button("🚀 Indexer 2 documents", variant="primary") count_btn = gr.Button("📊 Count points", variant="secondary") with gr.Row(): chunk_size = gr.Slider(64, 1024, value=200, step=8, label="chunk_size") overlap = gr.Slider(0, 256, value=20, step=2, label="overlap") batch_size = gr.Slider(1, 128, value=32, step=1, label="batch_size") store_text = gr.Checkbox(value=True, label="store_text (payload)") out_log = gr.Textbox(lines=18, label="Logs / Résultats", interactive=False) with gr.Row(): query_tb = gr.Textbox(label="Query text", value="alpha bravo") topk = gr.Slider(1, 20, value=5, step=1, label="top_k") query_btn = gr.Button("🔎 Query") query_out = gr.Textbox(lines=10, label="Résultats Query", interactive=False) wipe_btn.click(ui_wipe, inputs=[project_tb], outputs=[out_log]) index_btn.click(ui_index_sample, inputs=[project_tb, chunk_size, overlap, batch_size, store_text], outputs=[out_log]) count_btn.click(ui_count, inputs=[project_tb], outputs=[out_log]) query_btn.click(ui_query, inputs=[project_tb, query_tb, topk], outputs=[query_out]) # Monte l'UI Gradio sur la FastAPI app = gr.mount_gradio_app(fastapi_app, ui, path="/") if __name__ == "__main__": # Démarre Uvicorn pour les Spaces Docker (CMD: python -u /app/main.py) port = int(os.getenv("PORT", "7860")) LOG.info(f"Démarrage Uvicorn sur 0.0.0.0:{port}") uvicorn.run(app, host="0.0.0.0", port=port)