# -*- coding: utf-8 -*- """ FastAPI + Gradio : service d’indexation asynchrone avec FAISS. Ce fichier a été corrigé pour : * importer correctement `JobState` (import relatif) * garantir que le répertoire `app` est dans le PYTHONPATH lorsqu’on lance le script * conserver toutes les fonctionnalités précédentes (indexation, recherche, UI) """ from __future__ import annotations import os import io import json import time import hashlib import logging import tarfile import sys from pathlib import Path from typing import List, Dict, Any, Tuple, Optional from concurrent.futures import ThreadPoolExecutor import numpy as np import faiss from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse, StreamingResponse from pydantic import BaseModel import gradio as gr # --------------------------------------------------------------------------- # # RÉGLAGE DU PYTHONPATH (pour que les imports relatifs fonctionnent) # --------------------------------------------------------------------------- # # Si le script est lancé depuis le répertoire `app/`, le package `app` n’est pas # découvert automatiquement. On ajoute le répertoire parent au sys.path. CURRENT_DIR = Path(__file__).resolve().parent PROJECT_ROOT = CURRENT_DIR.parent if str(PROJECT_ROOT) not in sys.path: sys.path.insert(0, str(PROJECT_ROOT)) # --------------------------------------------------------------------------- # # LOGGING # --------------------------------------------------------------------------- # LOG = logging.getLogger("remote-indexer-async") if not LOG.handlers: h = logging.StreamHandler() h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")) LOG.addHandler(h) LOG.setLevel(logging.INFO) DBG = logging.getLogger("remote-indexer-async.debug") if not DBG.handlers: hd = logging.StreamHandler() hd.setFormatter(logging.Formatter("[DEBUG] %(asctime)s - %(message)s")) DBG.addHandler(hd) DBG.setLevel(logging.DEBUG) # --------------------------------------------------------------------------- # # CONFIGURATION (variables d’environnement) # --------------------------------------------------------------------------- # PORT = int(os.getenv("PORT", "7860")) DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data") os.makedirs(DATA_ROOT, exist_ok=True) EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower() EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-mpnet-base-v2").strip() EMB_BATCH = int(os.getenv("EMB_BATCH", "32")) EMB_DIM = int(os.getenv("EMB_DIM", "64")) # dimension réduite (optimisation) MAX_WORKERS = int(os.getenv("MAX_WORKERS", "1")) # --------------------------------------------------------------------------- # # CACHE DIRECTORIES (évite PermissionError) # --------------------------------------------------------------------------- # def _setup_cache_dirs() -> Dict[str, str]: os.environ.setdefault("HOME", "/home/user") CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/") paths = { "root": CACHE_ROOT, "hf_home": f"{CACHE_ROOT}/huggingface", "hf_hub": f"{CACHE_ROOT}/huggingface/hub", "hf_tf": f"{CACHE_ROOT}/huggingface/transformers", "torch": f"{CACHE_ROOT}/torch", "st": f"{CACHE_ROOT}/sentence-transformers", "mpl": f"{CACHE_ROOT}/matplotlib", } for p in paths.values(): try: os.makedirs(p, exist_ok=True) except Exception as e: LOG.warning("Impossible de créer %s : %s", p, e) os.environ["HF_HOME"] = paths["hf_home"] os.environ["HF_HUB_CACHE"] = paths["hf_hub"] os.environ["TRANSFORMERS_CACHE"] = paths["hf_tf"] os.environ["TORCH_HOME"] = paths["torch"] os.environ["SENTENCE_TRANSFORMERS_HOME"] = paths["st"] os.environ["MPLCONFIGDIR"] = paths["mpl"] os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1") os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") LOG.info("Caches configurés : %s", json.dumps(paths, indent=2)) return paths CACHE_PATHS = _setup_cache_dirs() # --------------------------------------------------------------------------- # # IMPORT DE LA CLASSE DE STATE (corrigé : import relatif) # --------------------------------------------------------------------------- # # Le fichier `index_state.py` se trouve dans `app/core/`. # En étant dans le répertoire `app`, on peut l’importer via le package `core`. from core.index_state import JobState # <-- IMPORT CORRIGÉ # --------------------------------------------------------------------------- # # GLOBALS # --------------------------------------------------------------------------- # JOBS: Dict[str, JobState] = {} def _now() -> str: return time.strftime("%H:%M:%S") def _proj_dirs(project_id: str) -> Tuple[str, str, str]: base = os.path.join(DATA_ROOT, project_id) ds_dir = os.path.join(base, "dataset") fx_dir = os.path.join(base, "faiss") os.makedirs(ds_dir, exist_ok=True) os.makedirs(fx_dir, exist_ok=True) return base, ds_dir, fx_dir def _add_msg(st: JobState, msg: str) -> None: st.messages.append(f"[{_now()}] {msg}") LOG.info("[%s] %s", st.job_id, msg) DBG.debug("[%s] %s", st.job_id, msg) def _set_stage(st: JobState, stage: str) -> None: st.stage = stage _add_msg(st, f"stage={stage}") # --------------------------------------------------------------------------- # # UTILITAIRES (chunking, normalisation, etc.) # --------------------------------------------------------------------------- # def _chunk_text(text: str, size: int = 200, overlap: int = 20) -> List[str]: text = (text or "").replace("\r\n", "\n") tokens = list(text) if size <= 0: return [text] if text else [] if overlap < 0: overlap = 0 chunks = [] i = 0 while i < len(tokens): j = min(i + size, len(tokens)) chunk = "".join(tokens[i:j]).strip() if chunk: chunks.append(chunk) if j == len(tokens): break i = j - overlap if (j - overlap) > i else j return chunks def _l2_normalize(x: np.ndarray) -> np.ndarray: n = np.linalg.norm(x, axis=1, keepdims=True) + 1e-12 return x / n # --------------------------------------------------------------------------- # # EMBEDDING PROVIDERS # --------------------------------------------------------------------------- # _ST_MODEL = None _HF_TOKENIZER = None _HF_MODEL = None def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray: vecs = np.zeros((len(texts), dim), dtype="float32") for i, t in enumerate(texts): h = hashlib.sha1((t or "").encode("utf-8")).digest() rng = np.random.default_rng(int.from_bytes(h[:8], "little", signed=False)) v = rng.standard_normal(dim).astype("float32") vecs[i] = v / (np.linalg.norm(v) + 1e-9) return vecs def _get_st_model(): global _ST_MODEL if _ST_MODEL is None: from sentence_transformers import SentenceTransformer _ST_MODEL = SentenceTransformer(EMB_MODEL, cache_folder=CACHE_PATHS["st"]) LOG.info("[st] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["st"]) return _ST_MODEL def _emb_st(texts: List[str]) -> np.ndarray: model = _get_st_model() vecs = model.encode( texts, batch_size=max(1, EMB_BATCH), convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False, ).astype("float32") return vecs def _get_hf_model(): global _HF_TOKENIZER, _HF_MODEL if _HF_MODEL is None or _HF_TOKENIZER is None: from transformers import AutoTokenizer, AutoModel _HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"]) _HF_MODEL = AutoModel.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"]) _HF_MODEL.eval() LOG.info("[hf] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["hf_tf"]) return _HF_TOKENIZER, _HF_MODEL def _mean_pool(last_hidden_state: np.ndarray, attention_mask: np.ndarray) -> np.ndarray: mask = attention_mask[..., None].astype(last_hidden_state.dtype) summed = (last_hidden_state * mask).sum(axis=1) counts = mask.sum(axis=1).clip(min=1e-9) return summed / counts def _emb_hf(texts: List[str]) -> np.ndarray: import torch tok, mod = _get_hf_model() all_vecs: List[np.ndarray] = [] bs = max(1, EMB_BATCH) with torch.no_grad(): for i in range(0, len(texts), bs): batch = texts[i:i + bs] enc = tok(batch, padding=True, truncation=True, return_tensors="pt") out = mod(**enc) last = out.last_hidden_state # (b, t, h) pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy()) all_vecs.append(pooled.astype("float32")) return np.concatenate(all_vecs, axis=0) # --------------------------------------------------------------------------- # # DATASET / FAISS I/O # --------------------------------------------------------------------------- # def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]], store_text: bool = True) -> None: os.makedirs(ds_dir, exist_ok=True) data_path = os.path.join(ds_dir, "data.jsonl") with open(data_path, "w", encoding="utf-8") as f: for r in rows: if not store_text: r = {k: v for k, v in r.items() if k != "text"} f.write(json.dumps(r, ensure_ascii=False) + "\n") meta = {"format": "jsonl", "columns": ["path", "text", "chunk_id"], "count": len(rows)} with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f: json.dump(meta, f, ensure_ascii=False, indent=2) def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]: data_path = os.path.join(ds_dir, "data.jsonl") if not os.path.isfile(data_path): return [] out: List[Dict[str, Any]] = [] with open(data_path, "r", encoding="utf-8") as f: for line in f: try: out.append(json.loads(line)) except Exception: continue return out def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any]) -> None: os.makedirs(fx_dir, exist_ok=True) idx_path = os.path.join(fx_dir, "emb.faiss") # ------------------- INDEX QUANTISÉ (IVF‑PQ) ------------------- # quantizer = faiss.IndexFlatIP(xb.shape[1]) # inner‑product (cosine si normalisé) index = faiss.IndexIVFPQ(quantizer, xb.shape[1], 100, 8, 8) # nlist=100, m=8, nbits=8 # entraînement sur un sous‑échantillon (max 10 k vecteurs) rng = np.random.default_rng(0) train = xb[rng.choice(xb.shape[0], min(10_000, xb.shape[0]), replace=False)] index.train(train) index.add(xb) faiss.write_index(index, idx_path) meta.update({"index_type": "IVF_PQ", "nlist": 100, "m": 8, "nbits": 8}) with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f: json.dump(meta, f, ensure_ascii=False, indent=2) def _load_faiss(fx_dir: str) -> faiss.Index: idx_path = os.path.join(fx_dir, "emb.faiss") if not os.path.isfile(idx_path): raise FileNotFoundError(f"FAISS index introuvable : {idx_path}") # mmap → l’index reste sur disque, la RAM n’est utilisée que pour les requêtes return faiss.read_index(idx_path, faiss.IO_FLAG_MMAP) def _tar_dir_to_bytes(dir_path: str) -> bytes: bio = io.BytesIO() with tarfile.open(fileobj=bio, mode="w:gz", compresslevel=9) as tar: tar.add(dir_path, arcname=os.path.basename(dir_path)) bio.seek(0) return bio.read() # --------------------------------------------------------------------------- # # THREAD‑POOL (asynchrone) # --------------------------------------------------------------------------- # EXECUTOR = ThreadPoolExecutor(max_workers=max(1, MAX_WORKERS)) LOG.info("ThreadPoolExecutor initialisé : max_workers=%s", MAX_WORKERS) def _do_index_job( st: JobState, files: List[Dict[str, str]], chunk_size: int, overlap: int, batch_size: int, store_text: bool, ) -> None: """ Pipeline complet : 1️⃣ Chunking 2️⃣ Embedding (dummy / st / hf) 3️⃣ Réduction de dimension (PCA) si besoin 4️⃣ Sauvegarde du dataset (texte optionnel) 5️⃣ Index FAISS quantisé + mmap """ try: base, ds_dir, fx_dir = _proj_dirs(st.project_id) # ------------------- 1️⃣ Chunking ------------------- _set_stage(st, "chunking") rows: List[Dict[str, Any]] = [] st.total_files = len(files) for f in files: path = (f.get("path") or "unknown").strip() txt = f.get("text") or "" chunks = _chunk_text(txt, size=chunk_size, overlap=overlap) for i, ck in enumerate(chunks): rows.append({"path": path, "text": ck, "chunk_id": i}) st.total_chunks = len(rows) _add_msg(st, f"Total chunks = {st.total_chunks}") # ------------------- 2️⃣ Embedding ------------------- _set_stage(st, "embedding") texts = [r["text"] for r in rows] if EMB_PROVIDER == "dummy": xb = _emb_dummy(texts, dim=EMB_DIM) elif EMB_PROVIDER == "st": xb = _emb_st(texts) else: xb = _emb_hf(texts) # ------------------- 3️⃣ Réduction PCA (si besoin) ------------------- if xb.shape[1] != EMB_DIM: from sklearn.decomposition import PCA pca = PCA(n_components=EMB_DIM, random_state=0) xb = pca.fit_transform(xb).astype("float32") LOG.info("Réduction PCA appliquée : %d → %d dimensions", xb.shape[1], EMB_DIM) st.embedded = xb.shape[0] _add_msg(st, f"Embeddings générés : {st.embedded}") # ------------------- 4️⃣ Sauvegarde dataset ------------------- _save_dataset(ds_dir, rows, store_text=store_text) _add_msg(st, f"Dataset sauvegardé dans {ds_dir}") # ------------------- 5️⃣ Index FAISS ------------------- _set_stage(st, "indexing") meta = { "dim": int(xb.shape[1]), "count": int(xb.shape[0]), "provider": EMB_PROVIDER, "model": EMB_MODEL if EMB_PROVIDER != "dummy" else None, } _save_faiss(fx_dir, xb, meta) st.indexed = int(xb.shape[0]) _add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}") _set_stage(st, "done") st.finished_at = time.time() except Exception as e: LOG.exception("Job %s échoué", st.job_id) st.errors.append(str(e)) _add_msg(st, f"❌ Exception : {e}") st.stage = "failed" st.finished_at = time.time() def _submit_job( project_id: str, files: List[Dict[str, str]], chunk_size: int, overlap: int, batch_size: int, store_text: bool, ) -> str: job_id = hashlib.sha1(f"{project_id}{time.time()}".encode()).hexdigest()[:12] st = JobState(job_id=job_id, project_id=project_id, stage="pending", messages=[]) JOBS[job_id] = st LOG.info("Job %s créé – %d fichiers", job_id, len(files)) EXECUTOR.submit( _do_index_job, st, files, chunk_size, overlap, batch_size, store_text, ) st.stage = "queued" return job_id # --------------------------------------------------------------------------- # # FASTAPI # --------------------------------------------------------------------------- # fastapi_app = FastAPI(title="remote-indexer-async", version="3.0.0") fastapi_app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class FileItem(BaseModel): path: str text: str class IndexRequest(BaseModel): project_id: str files: List[FileItem] chunk_size: int = 200 overlap: int = 20 batch_size: int = 32 store_text: bool = True # on peut désactiver via le payload ou env @fastapi_app.get("/health") def health(): return { "ok": True, "service": "remote-indexer-async", "provider": EMB_PROVIDER, "model": EMB_MODEL if EMB_PROVIDER != "dummy" else None, "cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"), "workers": MAX_WORKERS, "data_root": DATA_ROOT, "emb_dim": EMB_DIM, } @fastapi_app.post("/index") def index(req: IndexRequest): """ Lancement asynchrone : renvoie immédiatement un `job_id`. """ try: files = [fi.model_dump() for fi in req.files] job_id = _submit_job( project_id=req.project_id, files=files, chunk_size=int(req.chunk_size), overlap=int(req.overlap), batch_size=int(req.batch_size), store_text=bool(req.store_text), ) return {"job_id": job_id} except Exception as e: LOG.exception("Erreur soumission index") raise HTTPException(status_code=500, detail=str(e)) @fastapi_app.get("/status/{job_id}") def status(job_id: str): st = JOBS.get(job_id) if not st: raise HTTPException(status_code=404, detail="job inconnu") return JSONResponse(st.model_dump()) class SearchRequest(BaseModel): project_id: str query: str k: int = 5 @fastapi_app.post("/search") def search(req: SearchRequest): base, ds_dir, fx_dir = _proj_dirs(req.project_id) # Vérifier que l’index existe if not (os.path.isfile(os.path.join(fx_dir, "emb.faiss")) and os.path.isfile(os.path.join(ds_dir, "data.jsonl"))): raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)") rows = _load_dataset(ds_dir) if not rows: raise HTTPException(status_code=404, detail="dataset introuvable") # Embedding de la requête (même provider que l’index) if EMB_PROVIDER == "dummy": q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :] elif EMB_PROVIDER == "st": q = _emb_st([req.query])[0:1, :] else: q = _emb_hf([req.query])[0:1, :] # Recherche FAISS (mmap) index = _load_faiss(fx_dir) if index.d != q.shape[1]: raise HTTPException( status_code=500, detail=f"dim incompatibles : index.d={index.d} vs query={q.shape[1]}", ) scores, ids = index.search(q, int(max(1, req.k))) ids = ids[0].tolist() scores = scores[0].tolist() out = [] for idx, sc in zip(ids, scores): if idx < 0 or idx >= len(rows): continue r = rows[idx] out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)}) return {"results": out} # --------------------------------------------------------------------------- # # EXPORT ARTIFACTS (gzip) # --------------------------------------------------------------------------- # @fastapi_app.get("/artifacts/{project_id}/dataset") def download_dataset(project_id: str): _, ds_dir, _ = _proj_dirs(project_id) if not os.path.isdir(ds_dir): raise HTTPException(status_code=404, detail="Dataset introuvable") buf = _tar_dir_to_bytes(ds_dir) hdr = {"Content-Disposition": f'attachment; filename="{project_id}_dataset.tgz"'} return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr) @fastapi_app.get("/artifacts/{project_id}/faiss") def download_faiss(project_id: str): _, _, fx_dir = _proj_dirs(project_id) if not os.path.isdir(fx_dir): raise HTTPException(status_code=404, detail="FAISS introuvable") buf = _tar_dir_to_bytes(fx_dir) hdr = {"Content-Disposition": f'attachment; filename="{project_id}_faiss.tgz"'} return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr) # --------------------------------------------------------------------------- # # GRADIO UI (facultatif – test rapide) # --------------------------------------------------------------------------- # def _ui_index(project_id: str, sample_text: str): files = [{"path": "sample.txt", "text": sample_text}] try: req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files]) except Exception as e: return f"❌ Validation : {e}" try: res = index(req) return f"✅ Job lancé : {res['job_id']}" except Exception as e: return f"❌ Erreur : {e}" def _ui_search(project_id: str, query: str, k: int): try: res = search(SearchRequest(project_id=project_id, query=query, k=int(k))) return json.dumps(res, ensure_ascii=False, indent=2) except Exception as e: return f"❌ Erreur : {e}" with gr.Blocks(title="Remote Indexer (Async – Optimisé)", analytics_enabled=False) as ui: gr.Markdown("## Remote Indexer — Async (FAISS quantisé, mmap, texte optionnel)") with gr.Row(): pid = gr.Textbox(label="Project ID", value="DEMO") txt = gr.Textbox(label="Texte d’exemple", lines=4, value="Alpha bravo charlie delta echo foxtrot.") btn_idx = gr.Button("Lancer index (sample)") out_idx = gr.Textbox(label="Résultat") btn_idx.click(_ui_index, inputs=[pid, txt], outputs=[out_idx]) with gr.Row(): q = gr.Textbox(label="Query", value="alpha") k = gr.Slider(1, 20, value=5, step=1, label="Top‑K") btn_q = gr.Button("Rechercher") out_q = gr.Code(label="Résultats") btn_q.click(_ui_search, inputs=[pid, q, k], outputs=[out_q]) # Monte l’UI Gradio sur le même serveur FastAPI fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui") # --------------------------------------------------------------------------- # # MAIN # --------------------------------------------------------------------------- # if __name__ == "__main__": import uvicorn LOG.info("Démarrage Uvicorn – port %s – UI disponible à /ui", PORT) uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT)