Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,72 +1,80 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
-
AutoModelForCausalLM,
|
| 4 |
-
AutoProcessor,
|
| 5 |
-
GenerationConfig,
|
| 6 |
-
BitsAndBytesConfig,
|
| 7 |
-
)
|
| 8 |
from PIL import Image
|
| 9 |
import torch
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
-
# Model repository
|
| 17 |
-
repo_name = "cyan2k/molmo-7B-O-bnb-4bit"
|
| 18 |
-
|
| 19 |
-
# Load the processor and model
|
| 20 |
-
processor = AutoProcessor.from_pretrained(repo_name, trust_remote_code=True)
|
| 21 |
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
-
|
| 23 |
-
torch_dtype=torch.float16,
|
| 24 |
-
device_map="auto",
|
| 25 |
trust_remote_code=True,
|
| 26 |
-
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
-
# Ensure model is on GPU
|
| 30 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 31 |
-
model.to(device)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
tokenizer=processor.tokenizer,
|
| 51 |
-
)
|
| 52 |
-
# Decode generated tokens to text
|
| 53 |
-
generated_tokens = output[0, inputs["input_ids"].size(1):]
|
| 54 |
-
generated_text = processor.tokenizer.decode(
|
| 55 |
-
generated_tokens, skip_special_tokens=True
|
| 56 |
-
)
|
| 57 |
-
descriptions.append(generated_text.strip())
|
| 58 |
-
return "\n\n".join(descriptions)
|
| 59 |
|
| 60 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
with gr.Blocks() as demo:
|
| 62 |
-
gr.Markdown("
|
|
|
|
| 63 |
with gr.Row():
|
| 64 |
-
image_input = gr.
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
+
import spaces
|
| 6 |
|
| 7 |
+
# Load the processor and model
|
| 8 |
+
processor = AutoProcessor.from_pretrained(
|
| 9 |
+
'allenai/Molmo-7B-D-0924',
|
| 10 |
+
trust_remote_code=True,
|
| 11 |
+
torch_dtype='auto',
|
| 12 |
+
device_map='auto'
|
| 13 |
)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
+
'allenai/Molmo-7B-D-0924',
|
|
|
|
|
|
|
| 17 |
trust_remote_code=True,
|
| 18 |
+
torch_dtype='auto',
|
| 19 |
+
device_map='auto'
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
@spaces.GPU(duration=120)
|
| 24 |
+
def process_image_and_text(image, text):
|
| 25 |
+
# Process the image and text
|
| 26 |
+
inputs = processor.process(
|
| 27 |
+
images=[Image.fromarray(image)],
|
| 28 |
+
text=text
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Move inputs to the correct device and make a batch of size 1
|
| 32 |
+
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
| 33 |
+
|
| 34 |
+
# Generate output
|
| 35 |
+
output = model.generate_from_batch(
|
| 36 |
+
inputs,
|
| 37 |
+
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
| 38 |
+
tokenizer=processor.tokenizer
|
| 39 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Only get generated tokens; decode them to text
|
| 42 |
+
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
| 43 |
+
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 44 |
+
|
| 45 |
+
return generated_text
|
| 46 |
+
|
| 47 |
+
def chatbot(image, text, history):
|
| 48 |
+
if image is None:
|
| 49 |
+
return history + [("Please upload an image first.", None)]
|
| 50 |
+
|
| 51 |
+
response = process_image_and_text(image, text)
|
| 52 |
+
history.append((text, response))
|
| 53 |
+
return history
|
| 54 |
+
|
| 55 |
+
# Define the Gradio interface
|
| 56 |
with gr.Blocks() as demo:
|
| 57 |
+
gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
|
| 58 |
+
|
| 59 |
with gr.Row():
|
| 60 |
+
image_input = gr.Image(type="numpy")
|
| 61 |
+
chatbot_output = gr.Chatbot()
|
| 62 |
+
|
| 63 |
+
text_input = gr.Textbox(placeholder="Ask a question about the image...")
|
| 64 |
+
submit_button = gr.Button("Submit")
|
| 65 |
+
|
| 66 |
+
state = gr.State([])
|
| 67 |
+
|
| 68 |
+
submit_button.click(
|
| 69 |
+
chatbot,
|
| 70 |
+
inputs=[image_input, text_input, state],
|
| 71 |
+
outputs=[chatbot_output]
|
| 72 |
+
)
|
| 73 |
|
| 74 |
+
text_input.submit(
|
| 75 |
+
chatbot,
|
| 76 |
+
inputs=[image_input, text_input, state],
|
| 77 |
+
outputs=[chatbot_output]
|
| 78 |
+
)
|
| 79 |
|
| 80 |
+
demo.launch()
|