Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://huggingface.co/spaces/chrisjay/mnist-adversarial
Browse files- .gitignore +2 -1
- README.md +1 -0
- app.py +47 -8
- best_weights/mnist_model.pth +1 -1
- best_weights/optimizer.pth +2 -2
- requirements.txt +3 -1
.gitignore
CHANGED
|
@@ -4,4 +4,5 @@ flagged/*
|
|
| 4 |
data_mnist/*
|
| 5 |
model/*
|
| 6 |
model
|
| 7 |
-
data_mnist
|
|
|
|
|
|
| 4 |
data_mnist/*
|
| 5 |
model/*
|
| 6 |
model
|
| 7 |
+
data_mnist
|
| 8 |
+
slurm*
|
README.md
CHANGED
|
@@ -10,3 +10,4 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
app.py
CHANGED
|
@@ -20,11 +20,12 @@ n_epochs = 10
|
|
| 20 |
batch_size_train = 128
|
| 21 |
batch_size_test = 1000
|
| 22 |
learning_rate = 0.01
|
|
|
|
| 23 |
momentum = 0.5
|
| 24 |
log_interval = 10
|
| 25 |
random_seed = 1
|
| 26 |
TRAIN_CUTOFF = 10
|
| 27 |
-
TEST_PER_SAMPLE =
|
| 28 |
DASHBOARD_EXPLANATION = DASHBOARD_EXPLANATION.format(TEST_PER_SAMPLE=TEST_PER_SAMPLE)
|
| 29 |
WHAT_TO_DO=WHAT_TO_DO.format(num_samples=TRAIN_CUTOFF)
|
| 30 |
MODEL_PATH = 'model'
|
|
@@ -163,7 +164,6 @@ TRAIN_TRANSFORM = torchvision.transforms.Compose([
|
|
| 163 |
test_loader = torch.utils.data.DataLoader(MNISTCorrupted(TRAIN_TRANSFORM),
|
| 164 |
batch_size=batch_size_test, shuffle=False)
|
| 165 |
|
| 166 |
-
|
| 167 |
# Source: https://nextjournal.com/gkoehler/pytorch-mnist
|
| 168 |
class MNIST_Model(nn.Module):
|
| 169 |
def __init__(self):
|
|
@@ -221,6 +221,7 @@ def test():
|
|
| 221 |
acc = acc.item()
|
| 222 |
test_metric = '〽Current test metric -> Avg. loss: `{:.4f}`, Accuracy: `{:.0f}%`\n'.format(
|
| 223 |
test_loss,acc)
|
|
|
|
| 224 |
return test_metric,acc
|
| 225 |
|
| 226 |
|
|
@@ -234,6 +235,34 @@ optimizer = optim.SGD(network.parameters(), lr=learning_rate,
|
|
| 234 |
momentum=momentum)
|
| 235 |
|
| 236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
def train_and_test(train_model=True):
|
| 238 |
|
| 239 |
if train_model:
|
|
@@ -245,6 +274,7 @@ def train_and_test(train_model=True):
|
|
| 245 |
|
| 246 |
test_metric,test_acc = test()
|
| 247 |
|
|
|
|
| 248 |
if os.path.exists(METRIC_PATH):
|
| 249 |
metric_dict = read_json(METRIC_PATH)
|
| 250 |
metric_dict['all'] = metric_dict['all']+ [test_acc] if 'all' in metric_dict else [] + [test_acc]
|
|
@@ -274,6 +304,7 @@ def train_and_test(train_model=True):
|
|
| 274 |
return test_metric
|
| 275 |
|
| 276 |
|
|
|
|
| 277 |
model_state_dict = MODEL_WEIGHTS_PATH
|
| 278 |
optimizer_state_dict = OPTIMIZER_PATH
|
| 279 |
model_repo.git_pull()
|
|
@@ -288,9 +319,14 @@ else:
|
|
| 288 |
# Use best weights
|
| 289 |
BEST_WEIGHTS_MODEL = "best_weights/mnist_model.pth"
|
| 290 |
BEST_WEIGHTS_OPTIMIZER = "best_weights/optimizer.pth"
|
| 291 |
-
|
| 292 |
-
torch.
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
|
| 296 |
def image_classifier(inp):
|
|
@@ -306,20 +342,23 @@ def image_classifier(inp):
|
|
| 306 |
model_repo.git_pull()
|
| 307 |
model_state_dict = MODEL_WEIGHTS_PATH
|
| 308 |
optimizer_state_dict = OPTIMIZER_PATH
|
|
|
|
| 309 |
|
| 310 |
if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict):
|
|
|
|
| 311 |
network_state_dict = torch.load(model_state_dict)
|
| 312 |
network.load_state_dict(network_state_dict)
|
| 313 |
optimizer_state_dict = torch.load(optimizer_state_dict)
|
| 314 |
optimizer.load_state_dict(optimizer_state_dict)
|
| 315 |
else:
|
| 316 |
-
# Use best weights
|
|
|
|
| 317 |
BEST_WEIGHTS_MODEL = "best_weights/mnist_model.pth"
|
| 318 |
BEST_WEIGHTS_OPTIMIZER = "best_weights/optimizer.pth"
|
| 319 |
network.load_state_dict(torch.load(BEST_WEIGHTS_MODEL))
|
| 320 |
optimizer.load_state_dict(torch.load(BEST_WEIGHTS_OPTIMIZER))
|
| 321 |
-
|
| 322 |
-
input_image =
|
| 323 |
with torch.no_grad():
|
| 324 |
|
| 325 |
prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
|
|
|
|
| 20 |
batch_size_train = 128
|
| 21 |
batch_size_test = 1000
|
| 22 |
learning_rate = 0.01
|
| 23 |
+
adv_learning_rate= 0.001
|
| 24 |
momentum = 0.5
|
| 25 |
log_interval = 10
|
| 26 |
random_seed = 1
|
| 27 |
TRAIN_CUTOFF = 10
|
| 28 |
+
TEST_PER_SAMPLE = 5000
|
| 29 |
DASHBOARD_EXPLANATION = DASHBOARD_EXPLANATION.format(TEST_PER_SAMPLE=TEST_PER_SAMPLE)
|
| 30 |
WHAT_TO_DO=WHAT_TO_DO.format(num_samples=TRAIN_CUTOFF)
|
| 31 |
MODEL_PATH = 'model'
|
|
|
|
| 164 |
test_loader = torch.utils.data.DataLoader(MNISTCorrupted(TRAIN_TRANSFORM),
|
| 165 |
batch_size=batch_size_test, shuffle=False)
|
| 166 |
|
|
|
|
| 167 |
# Source: https://nextjournal.com/gkoehler/pytorch-mnist
|
| 168 |
class MNIST_Model(nn.Module):
|
| 169 |
def __init__(self):
|
|
|
|
| 221 |
acc = acc.item()
|
| 222 |
test_metric = '〽Current test metric -> Avg. loss: `{:.4f}`, Accuracy: `{:.0f}%`\n'.format(
|
| 223 |
test_loss,acc)
|
| 224 |
+
print(test_metric)
|
| 225 |
return test_metric,acc
|
| 226 |
|
| 227 |
|
|
|
|
| 235 |
momentum=momentum)
|
| 236 |
|
| 237 |
|
| 238 |
+
|
| 239 |
+
train_loader = torch.utils.data.DataLoader(
|
| 240 |
+
torchvision.datasets.MNIST('./files/', train=True, download=True,
|
| 241 |
+
transform=TRAIN_TRANSFORM),
|
| 242 |
+
batch_size=batch_size_train, shuffle=True)
|
| 243 |
+
|
| 244 |
+
test_iid_loader = torch.utils.data.DataLoader(
|
| 245 |
+
torchvision.datasets.MNIST('./files/', train=False, download=True,
|
| 246 |
+
transform=TRAIN_TRANSFORM),
|
| 247 |
+
batch_size=batch_size_test, shuffle=True)
|
| 248 |
+
|
| 249 |
+
model_state_dict = MODEL_WEIGHTS_PATH
|
| 250 |
+
optimizer_state_dict = OPTIMIZER_PATH
|
| 251 |
+
if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict):
|
| 252 |
+
network_state_dict = torch.load(model_state_dict)
|
| 253 |
+
network.load_state_dict(network_state_dict)
|
| 254 |
+
|
| 255 |
+
optimizer_state_dict = torch.load(optimizer_state_dict)
|
| 256 |
+
optimizer.load_state_dict(optimizer_state_dict)
|
| 257 |
+
|
| 258 |
+
# Train model
|
| 259 |
+
#n_epochs=20
|
| 260 |
+
#train(n_epochs,network,optimizer,train_loader)
|
| 261 |
+
#test()
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
def train_and_test(train_model=True):
|
| 267 |
|
| 268 |
if train_model:
|
|
|
|
| 274 |
|
| 275 |
test_metric,test_acc = test()
|
| 276 |
|
| 277 |
+
network.eval()
|
| 278 |
if os.path.exists(METRIC_PATH):
|
| 279 |
metric_dict = read_json(METRIC_PATH)
|
| 280 |
metric_dict['all'] = metric_dict['all']+ [test_acc] if 'all' in metric_dict else [] + [test_acc]
|
|
|
|
| 304 |
return test_metric
|
| 305 |
|
| 306 |
|
| 307 |
+
# Update model weights again
|
| 308 |
model_state_dict = MODEL_WEIGHTS_PATH
|
| 309 |
optimizer_state_dict = OPTIMIZER_PATH
|
| 310 |
model_repo.git_pull()
|
|
|
|
| 319 |
# Use best weights
|
| 320 |
BEST_WEIGHTS_MODEL = "best_weights/mnist_model.pth"
|
| 321 |
BEST_WEIGHTS_OPTIMIZER = "best_weights/optimizer.pth"
|
| 322 |
+
|
| 323 |
+
network_state_dict = torch.load(BEST_WEIGHTS_MODEL)
|
| 324 |
+
network.load_state_dict(network_state_dict)
|
| 325 |
+
|
| 326 |
+
optimizer_state_dict = torch.load(BEST_WEIGHTS_OPTIMIZER)
|
| 327 |
+
optimizer.load_state_dict(optimizer_state_dict)
|
| 328 |
+
if not os.path.exists(METRIC_PATH):
|
| 329 |
+
_ = train_and_test(False)
|
| 330 |
|
| 331 |
|
| 332 |
def image_classifier(inp):
|
|
|
|
| 342 |
model_repo.git_pull()
|
| 343 |
model_state_dict = MODEL_WEIGHTS_PATH
|
| 344 |
optimizer_state_dict = OPTIMIZER_PATH
|
| 345 |
+
which_weights=''
|
| 346 |
|
| 347 |
if os.path.exists(model_state_dict) and os.path.exists(optimizer_state_dict):
|
| 348 |
+
which_weights = "Using weights from model repo"
|
| 349 |
network_state_dict = torch.load(model_state_dict)
|
| 350 |
network.load_state_dict(network_state_dict)
|
| 351 |
optimizer_state_dict = torch.load(optimizer_state_dict)
|
| 352 |
optimizer.load_state_dict(optimizer_state_dict)
|
| 353 |
else:
|
| 354 |
+
# Use best weights
|
| 355 |
+
which_weights = "Using default best weights"
|
| 356 |
BEST_WEIGHTS_MODEL = "best_weights/mnist_model.pth"
|
| 357 |
BEST_WEIGHTS_OPTIMIZER = "best_weights/optimizer.pth"
|
| 358 |
network.load_state_dict(torch.load(BEST_WEIGHTS_MODEL))
|
| 359 |
optimizer.load_state_dict(torch.load(BEST_WEIGHTS_OPTIMIZER))
|
| 360 |
+
network.eval()
|
| 361 |
+
input_image = TRAIN_TRANSFORM(inp).unsqueeze(0)
|
| 362 |
with torch.no_grad():
|
| 363 |
|
| 364 |
prediction = torch.nn.functional.softmax(network(input_image)[0], dim=0)
|
best_weights/mnist_model.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 89871
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:148112958ca9545938f0660cec604ac4c7f52dca3523091e1e8e4e6a26e1ebc7
|
| 3 |
size 89871
|
best_weights/optimizer.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aac1c136737d50c2665563392a5b220396398cf1e2a2049dbefd7dc95473f5a5
|
| 3 |
+
size 89807
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
torch
|
| 2 |
torchvision
|
| 3 |
-
matplotlib
|
|
|
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
torchvision
|
| 3 |
+
matplotlib
|
| 4 |
+
gradio
|
| 5 |
+
huggingface_hub
|