Spaces:
Runtime error
Runtime error
| from libs import * | |
| from utils_func import create_dir, main_processing | |
| create_dir("tempDir") | |
| def load_image(image_file): | |
| img = Image.open(image_file) | |
| return img | |
| def streamlit_app(): | |
| detection_model_path = "weight_files/clothes_detection_model.pt" | |
| background_model_path = "weight_files/model.h5" | |
| save_path = "" | |
| image_file = None | |
| st.title("""WELCOME TO MY APP""") | |
| st.subheader("""FOR BACKGROUND REMOVAL AND CHANGE!""") | |
| col1 = None | |
| col2 = None | |
| final_img = None | |
| with st.spinner("[UPLOAD] Image uploading"): | |
| try: | |
| image_file = st.file_uploader('[UPLOAD] Please upload your image:', type=["png", "jpg", "jpeg"]) | |
| time.sleep(1) | |
| except: | |
| print("[ERROR] Sorry, something went wrong!") | |
| pass | |
| # print(type(image_file)) | |
| if image_file is not None: | |
| st.success("Load image successfully!...") | |
| image = load_image(image_file) | |
| # print(type(image)) | |
| col1, col2, col3 = st.columns(3) | |
| with col1: | |
| st.image(image, caption="Image before processing") | |
| save_path = "tempDir/"+ image_file.name | |
| image.save(save_path) | |
| image_path, details = save_path, image_file | |
| if details is not None: | |
| with col2: | |
| with st.spinner("[PROCESSING] Image processing"): | |
| final_img_path = main_processing(col1, col2, col3, sport_bg_path=stadium_sport_bg_path, swim_bg_path=beach_swim_bg_path, | |
| office_bg_path=office_bg_path, img_path=image_path, name=details.name, | |
| detection_model_path=detection_model_path, | |
| background_model_path=background_model_path) | |
| time.sleep(1) | |
| with col1: | |
| if final_img_path is not None: | |
| final_img = load_image(final_img_path) | |
| st.image(final_img, caption="Image after processing") | |
| st.balloons() | |
| with col2: | |
| with open(final_img_path, "rb") as file: | |
| st.write('\n') | |
| st.write('\n') | |
| st.write('\n') | |
| st.write('\n') | |
| st.write('\n') | |
| file_name = save_path.split("/")[-1].split(".")[-2] +"_from_abc" + ".png" | |
| if st.download_button( | |
| label="Download postprocessing image", | |
| data=file, | |
| file_name= file_name, | |
| mime="image/png" | |
| ): | |
| st.success('[DOWNLOAD] Download sucessfully!') | |
| if __name__ == '__main__': | |
| np.random.seed(42) | |
| tf.random.set_seed(42) | |
| bg_path = "" | |
| background_model_path = "weight_files/model.h5" | |
| detection_model_path = "weight_files/clothes_detection_model.pt" | |
| stadium_sport_bg_path = "backgrounds/camnou_stadium.jpg" | |
| beach_swim_bg_path = "backgrounds/beach.jpg" | |
| office_bg_path = "backgrounds/office-bg.jpg" | |
| image_path = None | |
| streamlit_app() | |