Spaces:
Running
Running
| import gradio as gr | |
| from transformers import pipeline | |
| # Define model names | |
| models = { | |
| "ModernBERT Base (Go-Emotions)": "cirimus/modernbert-base-go-emotions", | |
| "ModernBERT Large (Go-Emotions)": "cirimus/modernbert-large-go-emotions" | |
| } | |
| # Function to load the selected model and classify text | |
| def classify_text(model_name, text): | |
| classifier = pipeline("text-classification", model=models[model_name], top_k=None) | |
| predictions = classifier(text) | |
| return {pred["label"]: pred["score"] for pred in predictions[0]} | |
| # Create the Gradio interface | |
| interface = gr.Interface( | |
| fn=classify_text, | |
| inputs=[ | |
| gr.Dropdown( | |
| list(models.keys()), | |
| label="Select Model", | |
| value="ModernBERT Base (Go-Emotions)" | |
| ), | |
| gr.Textbox( | |
| lines=2, | |
| placeholder="Enter text to analyze emotions...", | |
| value="I am thrilled to be a part of this amazing journey!" | |
| ) | |
| ], | |
| outputs=gr.Label(num_top_classes=5), | |
| title="🎭 ModernBERT Emotion Classifier", | |
| description="Select a model and enter a sentence to see its associated emotions and confidence scores.", | |
| ) | |
| # Launch the app | |
| interface.launch() | |