Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,30 +5,18 @@ from datasets import load_dataset
|
|
| 5 |
# Load the Spider dataset
|
| 6 |
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
| 7 |
|
| 8 |
-
# Extract schema information from the dataset
|
| 9 |
-
|
| 10 |
column_names = set()
|
| 11 |
for item in spider_dataset:
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
column_names.add(column[1])
|
| 17 |
|
| 18 |
# Load tokenizer and model
|
| 19 |
-
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
| 20 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
| 21 |
-
|
| 22 |
-
def post_process_sql_query(sql_query):
|
| 23 |
-
# Modify the SQL query to match the dataset's schema
|
| 24 |
-
for db_id, table_name in db_table_names:
|
| 25 |
-
if "TABLE" in sql_query:
|
| 26 |
-
sql_query = sql_query.replace("TABLE", table_name)
|
| 27 |
-
break # Assuming only one table is referenced in the query
|
| 28 |
-
for column_name in column_names:
|
| 29 |
-
if "COLUMN" in sql_query:
|
| 30 |
-
sql_query = sql_query.replace("COLUMN", column_name, 1)
|
| 31 |
-
return sql_query
|
| 32 |
|
| 33 |
def generate_sql_from_user_input(query):
|
| 34 |
# Generate SQL for the user's query
|
|
@@ -38,7 +26,13 @@ def generate_sql_from_user_input(query):
|
|
| 38 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 39 |
|
| 40 |
# Post-process the SQL query to match the dataset's schema
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
return sql_query
|
| 43 |
|
| 44 |
# Create a Gradio interface
|
|
|
|
| 5 |
# Load the Spider dataset
|
| 6 |
spider_dataset = load_dataset("spider", split='train') # Load a subset of the dataset
|
| 7 |
|
| 8 |
+
# Extract schema information from the Spider dataset
|
| 9 |
+
table_names = set()
|
| 10 |
column_names = set()
|
| 11 |
for item in spider_dataset:
|
| 12 |
+
for table in item['db_id']:
|
| 13 |
+
table_names.add(table)
|
| 14 |
+
for column in item['question']:
|
| 15 |
+
column_names.add(column)
|
|
|
|
| 16 |
|
| 17 |
# Load tokenizer and model
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available
|
| 19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") # Update this to a model fine-tuned on Spider if available
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def generate_sql_from_user_input(query):
|
| 22 |
# Generate SQL for the user's query
|
|
|
|
| 26 |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 27 |
|
| 28 |
# Post-process the SQL query to match the dataset's schema
|
| 29 |
+
for table_name in table_names:
|
| 30 |
+
if "TABLE" in sql_query:
|
| 31 |
+
sql_query = sql_query.replace("TABLE", table_name)
|
| 32 |
+
break # Assuming only one table is referenced in the query
|
| 33 |
+
for column_name in column_names:
|
| 34 |
+
if "COLUMN" in sql_query:
|
| 35 |
+
sql_query = sql_query.replace("COLUMN", column_name, 1)
|
| 36 |
return sql_query
|
| 37 |
|
| 38 |
# Create a Gradio interface
|