File size: 10,731 Bytes
aad4cfe
e98015f
 
 
 
 
1c82e5b
e98015f
 
 
 
 
 
 
 
1074b1e
e98015f
 
 
 
 
 
 
 
 
25e6b09
 
 
aad4cfe
 
e98015f
ab34e07
 
 
 
9b9f42f
ab34e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c82e5b
6bfbd7f
9b9f42f
e98015f
9b9f42f
aad4cfe
ab34e07
1c82e5b
 
ab34e07
1c82e5b
 
9b9f42f
e98015f
ab34e07
9b9f42f
eadab79
9b9f42f
cac722b
 
aad4cfe
e3afe9e
e98015f
9b9f42f
 
 
25e6b09
9b9f42f
 
 
e98015f
9b9f42f
 
 
eadab79
9b9f42f
 
 
25e6b09
9b9f42f
 
 
aad4cfe
 
 
9b9f42f
 
 
 
 
 
 
 
 
 
 
 
 
 
cac722b
 
 
 
 
9b9f42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad4cfe
 
9b9f42f
 
 
 
 
 
 
 
 
 
aad4cfe
9b9f42f
 
cac722b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98015f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# app.py 
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
import warnings
import gradio as gr
import os
import git

# --- Main Class ---
warnings.filterwarnings('ignore')
plt.style.use('default')
sns.set_palette("husl")

class EnhancedAIvsRealGazeAnalyzer:
    def __init__(self):
        self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
        self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
        self.combined_data = None
        self.model = None
        self.scaler = None
        self.feature_names = []
        self.time_metrics = []
        self.numeric_cols = []

    def _find_and_standardize_participant_col(self, df, filename):
        participant_col = next((c for c in df.columns if 'participant' in str(c).lower()), None)
        if not participant_col:
            raise ValueError(f"Could not find a 'participant' column in the file: {filename}")
        df = df.rename(columns={participant_col: 'participant_id'})
        df['participant_id'] = df['participant_id'].astype(str)
        return df

    def load_and_process_data(self, base_path, response_file_path):
        print("--- Starting Robust Data Loading ---")
        response_df = pd.read_excel(response_file_path)
        response_df = self._find_and_standardize_participant_col(response_df, "GenAI Response.xlsx")
        for pair, ans in self.correct_answers.items():
            if pair in response_df.columns:
                response_df[f'{pair}_Correct'] = (response_df[pair].astype(str).str.strip().str.upper() == ans)
        response_long = response_df.melt(id_vars=['participant_id'], value_vars=self.correct_answers.keys(), var_name='Pair')
        correctness_long = response_df.melt(id_vars=['participant_id'], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
        correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
        response_long = response_long.merge(correctness_long[['participant_id', 'Pair', 'Correct']], on=['participant_id', 'Pair'])

        all_metrics_dfs = []
        for q in self.questions:
            file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{q}.xlsx"
            if os.path.exists(file_path):
                print(f"Processing {file_path}...")
                metrics_df = pd.read_excel(file_path, sheet_name=0)
                metrics_df = self._find_and_standardize_participant_col(metrics_df, f"{q} Metrics")
                metrics_df['Question'] = q
                all_metrics_dfs.append(metrics_df)

        if not all_metrics_dfs: raise ValueError("No aggregated metrics files were found.")
        self.combined_data = pd.concat(all_metrics_dfs, ignore_index=True)
        q_to_pair = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
        self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
        self.combined_data = self.combined_data.merge(response_long, on=['participant_id', 'Pair'], how='left')
        self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
        
        self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
        self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
        
        print(f"--- Data Loading Successful ---")
        return self

    def run_prediction_model(self, test_size, n_estimators):
        leaky_features = ['participant_id', 'Correct', 'Total_Correct', 'Overall_Accuracy']
        self.feature_names = [col for col in self.numeric_cols if col not in leaky_features]
        features = self.combined_data[self.feature_names].copy()
        target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
        valid_indices = target.notna()
        features, target = features[valid_indices], target[valid_indices]
        features = features.fillna(features.median()).fillna(0)
        if len(target.unique()) < 2: return "Not enough data to train.", None, None, gr.Markdown("Model not trained yet.")
        X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
        self.scaler = StandardScaler().fit(X_train)
        self.model = RandomForestClassifier(n_estimators=int(n_estimators), random_state=42, class_weight='balanced').fit(self.scaler.transform(X_train), y_train)
        report = classification_report(y_test, self.model.predict(self.scaler.transform(X_test)), target_names=['Incorrect', 'Correct'], output_dict=True)
        auc_score = roc_auc_score(y_test, self.model.predict_proba(self.scaler.transform(X_test))[:, 1])
        summary_md = f"### Model Performance\n- **AUC Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}"
        report_df = pd.DataFrame(report).transpose().round(3)
        feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature_importances_}).sort_values('Importance', ascending=False).head(15)
        fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f'Top 15 Predictive Features (n_estimators={int(n_estimators)})', fontsize=14); plt.tight_layout()
        
        # <<< FIX: Updated status message >>>
        return summary_md, report_df, fig, gr.Markdown("βœ… **Model trained successfully.**")

    def analyze_rq1_metric(self, metric):
        if not metric or metric not in self.combined_data.columns: return None, "Metric not found."
        correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
        incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
        if len(correct) < 2 or len(incorrect) < 2: return None, "Not enough data for both groups to compare."
        t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
        fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout()
        summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}"""
        return fig, summary

# --- DATA SETUP & GRADIO APP ---
def setup_and_load_data():
    repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
    repo_dir = "GenAIEyeTrackingCleanedDataset"
    if not os.path.exists(repo_dir): 
        print(f"Cloning repository {repo_url}...")
        git.Repo.clone_from(repo_url, repo_dir)
    else: 
        print("Data repository already exists.")
    base_path = repo_dir 
    response_file_path = os.path.join(repo_dir, "GenAI Response.xlsx")
    analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file_path)
    return analyzer

analyzer = setup_and_load_data()

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
    with gr.Tabs():
        with gr.TabItem("πŸ“Š RQ1: Viewing Time vs. Correctness"):
            with gr.Row():
                with gr.Column(scale=1):
                    rq1_metric_dropdown=gr.Dropdown(choices=analyzer.time_metrics, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
                    rq1_summary_output=gr.Markdown(label="Statistical Summary")
                with gr.Column(scale=2):
                    rq1_plot_output=gr.Plot(label="Metric Comparison")
        
        with gr.TabItem("πŸ€– RQ2: Predicting Correctness from Gaze"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("#### Tune Model Hyperparameters")
                    rq2_test_size_slider=gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
                    rq2_estimators_slider=gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees")
                    # <<< FIX: Updated initial status message >>>
                    rq2_status = gr.Markdown("Train a model to see performance metrics.")
                with gr.Column(scale=2):
                    rq2_summary_output=gr.Markdown(label="Model Performance Summary")
                    rq2_table_output=gr.Dataframe(label="Classification Report", interactive=False)
                    rq2_plot_output=gr.Plot(label="Feature Importance")

    # --- WIRING FOR ALL TABS ---
    outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status]
    
    rq1_metric_dropdown.change(fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq1_summary_output])
    
    rq2_test_size_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
    rq2_estimators_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)

    # Pre-load the initial state of the dashboard
    def initial_load():
        rq1_fig, rq1_summary = analyzer.analyze_rq1_metric(analyzer.time_metrics[0] if analyzer.time_metrics else None)
        model_summary, report_df, feature_fig, status_md = analyzer.run_prediction_model(0.3, 100)
        
        return {
            rq1_plot_output: rq1_fig,
            rq1_summary_output: rq1_summary,
            rq2_summary_output: model_summary,
            rq2_table_output: report_df,
            rq2_plot_output: feature_fig,
            rq2_status: status_md
        }

    demo.load(
        fn=initial_load,
        outputs=[
            rq1_plot_output, rq1_summary_output, 
            rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status
        ]
    )

if __name__ == "__main__":
    demo.launch()