File size: 10,731 Bytes
aad4cfe e98015f 1c82e5b e98015f 1074b1e e98015f 25e6b09 aad4cfe e98015f ab34e07 9b9f42f ab34e07 1c82e5b 6bfbd7f 9b9f42f e98015f 9b9f42f aad4cfe ab34e07 1c82e5b ab34e07 1c82e5b 9b9f42f e98015f ab34e07 9b9f42f eadab79 9b9f42f cac722b aad4cfe e3afe9e e98015f 9b9f42f 25e6b09 9b9f42f e98015f 9b9f42f eadab79 9b9f42f 25e6b09 9b9f42f aad4cfe 9b9f42f cac722b 9b9f42f aad4cfe 9b9f42f aad4cfe 9b9f42f cac722b e98015f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# app.py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
import warnings
import gradio as gr
import os
import git
# --- Main Class ---
warnings.filterwarnings('ignore')
plt.style.use('default')
sns.set_palette("husl")
class EnhancedAIvsRealGazeAnalyzer:
def __init__(self):
self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
self.combined_data = None
self.model = None
self.scaler = None
self.feature_names = []
self.time_metrics = []
self.numeric_cols = []
def _find_and_standardize_participant_col(self, df, filename):
participant_col = next((c for c in df.columns if 'participant' in str(c).lower()), None)
if not participant_col:
raise ValueError(f"Could not find a 'participant' column in the file: {filename}")
df = df.rename(columns={participant_col: 'participant_id'})
df['participant_id'] = df['participant_id'].astype(str)
return df
def load_and_process_data(self, base_path, response_file_path):
print("--- Starting Robust Data Loading ---")
response_df = pd.read_excel(response_file_path)
response_df = self._find_and_standardize_participant_col(response_df, "GenAI Response.xlsx")
for pair, ans in self.correct_answers.items():
if pair in response_df.columns:
response_df[f'{pair}_Correct'] = (response_df[pair].astype(str).str.strip().str.upper() == ans)
response_long = response_df.melt(id_vars=['participant_id'], value_vars=self.correct_answers.keys(), var_name='Pair')
correctness_long = response_df.melt(id_vars=['participant_id'], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
response_long = response_long.merge(correctness_long[['participant_id', 'Pair', 'Correct']], on=['participant_id', 'Pair'])
all_metrics_dfs = []
for q in self.questions:
file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{q}.xlsx"
if os.path.exists(file_path):
print(f"Processing {file_path}...")
metrics_df = pd.read_excel(file_path, sheet_name=0)
metrics_df = self._find_and_standardize_participant_col(metrics_df, f"{q} Metrics")
metrics_df['Question'] = q
all_metrics_dfs.append(metrics_df)
if not all_metrics_dfs: raise ValueError("No aggregated metrics files were found.")
self.combined_data = pd.concat(all_metrics_dfs, ignore_index=True)
q_to_pair = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
self.combined_data = self.combined_data.merge(response_long, on=['participant_id', 'Pair'], how='left')
self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
print(f"--- Data Loading Successful ---")
return self
def run_prediction_model(self, test_size, n_estimators):
leaky_features = ['participant_id', 'Correct', 'Total_Correct', 'Overall_Accuracy']
self.feature_names = [col for col in self.numeric_cols if col not in leaky_features]
features = self.combined_data[self.feature_names].copy()
target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
valid_indices = target.notna()
features, target = features[valid_indices], target[valid_indices]
features = features.fillna(features.median()).fillna(0)
if len(target.unique()) < 2: return "Not enough data to train.", None, None, gr.Markdown("Model not trained yet.")
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
self.scaler = StandardScaler().fit(X_train)
self.model = RandomForestClassifier(n_estimators=int(n_estimators), random_state=42, class_weight='balanced').fit(self.scaler.transform(X_train), y_train)
report = classification_report(y_test, self.model.predict(self.scaler.transform(X_test)), target_names=['Incorrect', 'Correct'], output_dict=True)
auc_score = roc_auc_score(y_test, self.model.predict_proba(self.scaler.transform(X_test))[:, 1])
summary_md = f"### Model Performance\n- **AUC Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}"
report_df = pd.DataFrame(report).transpose().round(3)
feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature_importances_}).sort_values('Importance', ascending=False).head(15)
fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f'Top 15 Predictive Features (n_estimators={int(n_estimators)})', fontsize=14); plt.tight_layout()
# <<< FIX: Updated status message >>>
return summary_md, report_df, fig, gr.Markdown("β
**Model trained successfully.**")
def analyze_rq1_metric(self, metric):
if not metric or metric not in self.combined_data.columns: return None, "Metric not found."
correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
if len(correct) < 2 or len(incorrect) < 2: return None, "Not enough data for both groups to compare."
t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout()
summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}"""
return fig, summary
# --- DATA SETUP & GRADIO APP ---
def setup_and_load_data():
repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
repo_dir = "GenAIEyeTrackingCleanedDataset"
if not os.path.exists(repo_dir):
print(f"Cloning repository {repo_url}...")
git.Repo.clone_from(repo_url, repo_dir)
else:
print("Data repository already exists.")
base_path = repo_dir
response_file_path = os.path.join(repo_dir, "GenAI Response.xlsx")
analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file_path)
return analyzer
analyzer = setup_and_load_data()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
with gr.Tabs():
with gr.TabItem("π RQ1: Viewing Time vs. Correctness"):
with gr.Row():
with gr.Column(scale=1):
rq1_metric_dropdown=gr.Dropdown(choices=analyzer.time_metrics, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
rq1_summary_output=gr.Markdown(label="Statistical Summary")
with gr.Column(scale=2):
rq1_plot_output=gr.Plot(label="Metric Comparison")
with gr.TabItem("π€ RQ2: Predicting Correctness from Gaze"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Tune Model Hyperparameters")
rq2_test_size_slider=gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
rq2_estimators_slider=gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees")
# <<< FIX: Updated initial status message >>>
rq2_status = gr.Markdown("Train a model to see performance metrics.")
with gr.Column(scale=2):
rq2_summary_output=gr.Markdown(label="Model Performance Summary")
rq2_table_output=gr.Dataframe(label="Classification Report", interactive=False)
rq2_plot_output=gr.Plot(label="Feature Importance")
# --- WIRING FOR ALL TABS ---
outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status]
rq1_metric_dropdown.change(fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq1_summary_output])
rq2_test_size_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
rq2_estimators_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
# Pre-load the initial state of the dashboard
def initial_load():
rq1_fig, rq1_summary = analyzer.analyze_rq1_metric(analyzer.time_metrics[0] if analyzer.time_metrics else None)
model_summary, report_df, feature_fig, status_md = analyzer.run_prediction_model(0.3, 100)
return {
rq1_plot_output: rq1_fig,
rq1_summary_output: rq1_summary,
rq2_summary_output: model_summary,
rq2_table_output: report_df,
rq2_plot_output: feature_fig,
rq2_status: status_md
}
demo.load(
fn=initial_load,
outputs=[
rq1_plot_output, rq1_summary_output,
rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status
]
)
if __name__ == "__main__":
demo.launch() |