File size: 15,209 Bytes
cd63cff e98015f 6bfbd7f e98015f 1c82e5b e98015f 1074b1e e98015f cd63cff 25e6b09 e98015f ab34e07 1c82e5b 6bfbd7f eadab79 e98015f 1c82e5b ab34e07 1c82e5b eadab79 ab34e07 1c82e5b eadab79 e98015f ab34e07 eadab79 e98015f eadab79 e3afe9e e98015f eadab79 25e6b09 eadab79 e98015f eadab79 25e6b09 eadab79 25e6b09 ab34e07 eadab79 1c82e5b cd63cff 1c82e5b eadab79 1c82e5b 6bfbd7f 1c82e5b eadab79 1c82e5b eadab79 1c82e5b eadab79 1c82e5b eadab79 e98015f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# app.py
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
import warnings
import gradio as gr
import os
import git
# --- Main Class ---
warnings.filterwarnings('ignore')
plt.style.use('default')
sns.set_palette("husl")
class EnhancedAIvsRealGazeAnalyzer:
def __init__(self):
self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
self.combined_data = None
self.fixation_data = {}
self.participant_list = []
self.model = None
self.scaler = None
self.feature_names = []
def _find_and_standardize_participant_col(self, df, filename):
participant_col = next((c for c in df.columns if 'participant' in str(c).lower()), None)
if not participant_col:
raise ValueError(f"Could not find a 'participant' column in the file: {filename}")
df.rename(columns={participant_col: 'participant_id'}, inplace=True)
df['participant_id'] = df['participant_id'].astype(str)
return df
def load_and_process_data(self, base_path, response_file_path):
print("--- Starting Robust Data Loading ---")
response_df = pd.read_excel(response_file_path)
response_df = self._find_and_standardize_participant_col(response_df, "GenAI Response.xlsx")
for pair, ans in self.correct_answers.items():
if pair in response_df.columns:
response_df[f'{pair}_Correct'] = (response_df[pair].astype(str).str.strip().str.upper() == ans)
response_long = response_df.melt(id_vars=['participant_id'], value_vars=self.correct_answers.keys(), var_name='Pair')
correctness_long = response_df.melt(id_vars=['participant_id'], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
response_long = response_long.merge(correctness_long[['participant_id', 'Pair', 'Correct']], on=['participant_id', 'Pair'])
all_metrics_dfs = []
for q in self.questions:
file_path = f"{base_path summary_text, fig, gr.Slider(maximum=slider_max, value=fixation_num, interactive=True)
def analyze_rq1_metric(self, metric):
if not metric or metric not in self.combined_data.columns: return None, "Metric not found."
correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
if len(correct) < 2 or len(incorrect) < 2: return None, "Not enough data for both groups to compare."
t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout()
summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}"""
return fig, summary
# --- DATA SETUP & GRADIO APP ---
def setup_and_load_data():
repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
repo_dir = "GenAIEyeTrackingCleanedDataset"
if not os.path.exists(repo_dir): git.Repo.clone_from(repo_url, repo_dir)
else: print("Data repository already exists.")
base_path = repo_dir
response_file_path = os.path.join(repo_dir, "GenAI Response.xlsx")
analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file_path)
return analyzer
analyzer = setup_and_load_data()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
with gr.Tabs() as tabs:
with gr.TabItem("π RQ1: Viewing Time vs. Correctness", id=0):
# ... (UI is the same)
with gr.TabItem("π€ RQ2: Predicting Correctness from Gaze", id=1):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Tune Model Hyperparameters")
rq2_test_size_slider=gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
rq2_estimators_slider=gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees")
rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.")
with gr.Column(scale=2):
# ... (UI is the same)
with gr.TabItem("ποΈ Gaze Playback & Real-Time Prediction", id=2):
}/Filtered_GenAI_Metrics_cleaned_{q}.xlsx"
if os.path.exists(file_path):
xls = pd.ExcelFile(file_path)
metrics_df = pd.read_excel(xls, sheet_name=0)
metrics_df = self._find_and_standardize_participant_col(metrics_df, f"{q} Metrics")
metrics_df['Question'] = q
all_metrics_dfs.append(metrics_df)
if len(xls.sheet_names) > 1:
try:
fix_df = pd.read_excel(xls, sheet_name=1)
fix_df = self._find_and_standardize_participant_col(fix_df, f"{q} Fixations")
fix_df.dropna(subset=['Fixation point X', 'Fixation point Y', 'Gaze event duration (ms)'], inplace=True)
for participant, group in fix_df.groupby('participant_id'):
self.fixation_data[(participant, q)] = group.reset_index(drop=True)
except Exception as e:
print(f" -> WARNING: Could not load fixation sheet for {q}. Error: {e}")
if not all_metrics_dfs: raise ValueError("No aggregated metrics files were found.")
self.combined_data = pd.concat(all_metrics_dfs, ignore_index=True)
q_to_pair# ... (UI is the same)
# The UI structure is identical to before, just add the new status component
# This is a bit of a rewrite to use the ids for clarity.
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
with gr.Tabs() as tabs:
with gr.TabItem("π RQ1: Viewing Time vs. Correctness", id=0):
with gr.Row():
with gr.Column(scale=1):
rq1_metric_dropdown = gr.Dropdown(choices=analyzer.time_metrics = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
self.combined_data = self.combined_data.merge(response_long, on=['participant_id', 'Pair'], how='left')
self.combined_data['Answer_Correctness, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
rq1_summary_output = gr.Markdown(label="Statistical Summary")
with gr.Column(scale=2):
rq1_plot_output = gr.Plot(label="Metric Comparison")
with gr.TabItem("π€ RQ2: Predicting Correctness from Gaze", id=1):
with gr.Row():
with gr.Column(scale=1):
gr'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
.Markdown("#### Tune Model Hyperparameters")
rq2_test_size_slider = gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3
self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
self.time_metrics = [c for c in self.numeric_cols if any, label="Test Set Size")
rq2_estimators_slider = gr.Slider(minimum=10(k in c.lower() for k in ['time', 'duration', 'fixation'])]
, maximum=200, step=10, value=100, label="Number of Trees")# KEY FIX: Participant list is now derived ONLY from trials with valid fixation data.
self.participant_list
rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.")
= sorted(list(set([key[0] for key in self.fixation_data.keys()]))) with gr.Column(scale=2):
rq2_summary_output = gr.Markdown(label
print(f"--- Data Loading Successful. Found {len(self.participant_list)} participants with fixation data.="Model Performance Summary")
rq2_table_output = gr.Dataframe(label="Classification Report", ---")
return self
def run_prediction_model(self, test_size, n_estimators interactive=False)
rq2_plot_output = gr.Plot(label="Feature Importance")
):
leaky_features = ['Correct', 'participant_id']
self.feature_names = [with gr.TabItem("ποΈ Gaze Playback & Real-Time Prediction", id=2):
col for col in self.combined_data.select_dtypes(include=np.number).columns if col not in leaky_with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### See the Prediction Efeatures]
features = self.combined_data[self.feature_names].copy()
target = self.combinedvolve with Every Glance!")
playback_participant = gr.Dropdown(choices=analyzer.participant_list, label_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
valid="Select Participant")
playback_question = gr.Dropdown(choices=analyzer.questions, label="Select Question_indices = target.notna()
features, target = features[valid_indices], target[valid_")
gr.Markdown("Use the slider to play back fixations one by one.")
playback_sliderindices]
features = features.fillna(features.median()).fillna(0)
if len(target = gr.Slider(minimum=0, maximum=1, step=1, value=0, label="Fix.unique()) < 2: return "Not enough data to train.", None, None
X_train, X_testation Number", interactive=False)
playback_summary = gr.Markdown(label="Trial Info")
with gr.Column(scale=2):
playback_plot = gr.Plot(label="Gaze Play, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
self.scaler = StandardScaler().fitback & Live Prediction")
outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status]
outputs_playback = [playback_summary, playback(X_train)
self.model = RandomForestClassifier(n_estimators=int(n_estimators), random_state=42, class_weight='balanced').fit(self.scaler.transform(X_train), y_train)
_plot, playback_slider]
rq1_metric_dropdown.change(fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq report = classification_report(y_test, self.model.predict(self.scaler.transform(X_test)), target_names=['Incorrect', 'Correct'], output_dict=True)
auc_score =1_summary_output])
rq2_test_size_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs roc_auc_score(y_test, self.model.predict_proba(self.scaler.transform(X_test))[:, 1])
summary_md = f"### Model Performance\n- **AUC_rq2)
rq2_estimators_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}"
report_df = pd.DataFrame(report).transpose().round(3)
feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature2)
playback_inputs = [playback_participant, playback_question, playback_slider]
playback_participant.change(lambda: 0, None, playback_slider).then(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback)
playback_question.change(lambda_importances_}).sort_values('Importance', ascending=False).head(15)
fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f': 0, None, playback_slider).then(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback)
playback_slider.release(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback)
demo.load(Top 15 Predictive Features', fontsize=14); plt.tight_layout()
return summary_md, report_df, fig
def _recalculate_features_from_fixations(self, fixations_df):fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq1_summary_output])
demo.load(fn=analyzer.run_prediction
feature_vector = pd.Series(0.0, index=self.feature_names)
if fixations_df.empty: return feature_vector.fillna(0).values.reshape(1, -1)
if 'AOI name' in fixations_df.columns:
for aoi_name,_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs group in fixations_df.groupby('AOI name'):
col_name = f'Total fixation duration on {aoi_name}'
if col_name in feature_vector.index:
feature_vector[col_name] = group['Gaze event duration (ms)'].sum()
feature_vector['Total Recording Duration'] = fixations_df['Gaze event duration (ms)'].sum()
return feature_vector.fillna(0).values.reshape(1, -1)
def generate_gaze_playback(self, participant, question, fixation_num):
trial_key = (str(participant), question)
if not participant or not question or trial_key not in self.fixation_data:
return "**No fixation data found for this trial.**", None, gr.Slider(interactive=False, value=0)
all_fixations = self.fixation_data[trial_key]
fixation_num = int(fixation_num)
slider_max = len(all_fixations)
if fixation_num > slider_max: fixation_num = slider_max
current_fixations = all_fixations.iloc[:fixation_num]
partial_features = self._recalculate_features_from_fixations(current_fixations)
prediction_prob = self.model.predict_proba(self.scaler.transform(partial_features))[0]
prob_correct = prediction_prob[1]
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [4, 1]})
fig.suptitle_rq2)
if __name__ == "__main__":
demo.launch() |