File size: 15,209 Bytes
cd63cff
e98015f
 
 
6bfbd7f
e98015f
 
1c82e5b
e98015f
 
 
 
 
 
 
 
1074b1e
e98015f
 
 
 
 
 
 
 
 
cd63cff
25e6b09
 
 
 
e98015f
ab34e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c82e5b
6bfbd7f
eadab79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98015f
1c82e5b
 
ab34e07
1c82e5b
 
 
eadab79
 
 
 
 
 
 
 
 
ab34e07
1c82e5b
 
eadab79
 
 
 
 
 
 
 
 
 
 
e98015f
ab34e07
eadab79
 
 
 
 
 
 
 
 
 
e98015f
eadab79
 
 
 
 
 
 
 
 
 
e3afe9e
e98015f
eadab79
 
 
 
 
 
 
 
25e6b09
eadab79
 
 
 
 
 
 
e98015f
eadab79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e6b09
eadab79
 
 
 
 
 
 
 
25e6b09
ab34e07
eadab79
 
1c82e5b
cd63cff
1c82e5b
eadab79
1c82e5b
 
 
 
 
6bfbd7f
1c82e5b
 
 
eadab79
 
1c82e5b
 
 
 
 
eadab79
1c82e5b
 
 
eadab79
1c82e5b
eadab79
e98015f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# app.py 
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
import warnings
import gradio as gr
import os
import git

# --- Main Class ---
warnings.filterwarnings('ignore')
plt.style.use('default')
sns.set_palette("husl")

class EnhancedAIvsRealGazeAnalyzer:
    def __init__(self):
        self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
        self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
        self.combined_data = None
        self.fixation_data = {}
        self.participant_list = []
        self.model = None
        self.scaler = None
        self.feature_names = []

    def _find_and_standardize_participant_col(self, df, filename):
        participant_col = next((c for c in df.columns if 'participant' in str(c).lower()), None)
        if not participant_col:
            raise ValueError(f"Could not find a 'participant' column in the file: {filename}")
        df.rename(columns={participant_col: 'participant_id'}, inplace=True)
        df['participant_id'] = df['participant_id'].astype(str)
        return df

    def load_and_process_data(self, base_path, response_file_path):
        print("--- Starting Robust Data Loading ---")
        response_df = pd.read_excel(response_file_path)
        response_df = self._find_and_standardize_participant_col(response_df, "GenAI Response.xlsx")
        for pair, ans in self.correct_answers.items():
            if pair in response_df.columns:
                response_df[f'{pair}_Correct'] = (response_df[pair].astype(str).str.strip().str.upper() == ans)
        response_long = response_df.melt(id_vars=['participant_id'], value_vars=self.correct_answers.keys(), var_name='Pair')
        correctness_long = response_df.melt(id_vars=['participant_id'], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
        correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
        response_long = response_long.merge(correctness_long[['participant_id', 'Pair', 'Correct']], on=['participant_id', 'Pair'])

        all_metrics_dfs = []
        for q in self.questions:
            file_path = f"{base_path summary_text, fig, gr.Slider(maximum=slider_max, value=fixation_num, interactive=True)
    
    def analyze_rq1_metric(self, metric):
        if not metric or metric not in self.combined_data.columns: return None, "Metric not found."
        correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
        incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
        if len(correct) < 2 or len(incorrect) < 2: return None, "Not enough data for both groups to compare."
        t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
        fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout()
        summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}"""
        return fig, summary

# --- DATA SETUP & GRADIO APP ---
def setup_and_load_data():
    repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
    repo_dir = "GenAIEyeTrackingCleanedDataset"
    if not os.path.exists(repo_dir): git.Repo.clone_from(repo_url, repo_dir)
    else: print("Data repository already exists.")
    base_path = repo_dir 
    response_file_path = os.path.join(repo_dir, "GenAI Response.xlsx")
    analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file_path)
    return analyzer

analyzer = setup_and_load_data()

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
    with gr.Tabs() as tabs:
        with gr.TabItem("πŸ“Š RQ1: Viewing Time vs. Correctness", id=0):
            # ... (UI is the same)
        with gr.TabItem("πŸ€– RQ2: Predicting Correctness from Gaze", id=1):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("#### Tune Model Hyperparameters")
                    rq2_test_size_slider=gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
                    rq2_estimators_slider=gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees")
                    rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.")
                with gr.Column(scale=2):
                    # ... (UI is the same)
        with gr.TabItem("πŸ‘οΈ Gaze Playback & Real-Time Prediction", id=2):
            }/Filtered_GenAI_Metrics_cleaned_{q}.xlsx"
            if os.path.exists(file_path):
                xls = pd.ExcelFile(file_path)
                metrics_df = pd.read_excel(xls, sheet_name=0)
                metrics_df = self._find_and_standardize_participant_col(metrics_df, f"{q} Metrics")
                metrics_df['Question'] = q
                all_metrics_dfs.append(metrics_df)
                
                if len(xls.sheet_names) > 1:
                    try:
                        fix_df = pd.read_excel(xls, sheet_name=1)
                        fix_df = self._find_and_standardize_participant_col(fix_df, f"{q} Fixations")
                        fix_df.dropna(subset=['Fixation point X', 'Fixation point Y', 'Gaze event duration (ms)'], inplace=True)
                        for participant, group in fix_df.groupby('participant_id'):
                            self.fixation_data[(participant, q)] = group.reset_index(drop=True)
                    except Exception as e:
                        print(f"  -> WARNING: Could not load fixation sheet for {q}. Error: {e}")

        if not all_metrics_dfs: raise ValueError("No aggregated metrics files were found.")
        self.combined_data = pd.concat(all_metrics_dfs, ignore_index=True)
        q_to_pair# ... (UI is the same)

# The UI structure is identical to before, just add the new status component
# This is a bit of a rewrite to use the ids for clarity.
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis")
    with gr.Tabs() as tabs:
        with gr.TabItem("πŸ“Š RQ1: Viewing Time vs. Correctness", id=0):
            with gr.Row():
                with gr.Column(scale=1):
                    rq1_metric_dropdown = gr.Dropdown(choices=analyzer.time_metrics = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
        self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
        self.combined_data = self.combined_data.merge(response_long, on=['participant_id', 'Pair'], how='left')
        self.combined_data['Answer_Correctness, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
                    rq1_summary_output = gr.Markdown(label="Statistical Summary")
                with gr.Column(scale=2):
                    rq1_plot_output = gr.Plot(label="Metric Comparison")
        with gr.TabItem("πŸ€– RQ2: Predicting Correctness from Gaze", id=1):
            with gr.Row():
                with gr.Column(scale=1):
                    gr'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
        .Markdown("#### Tune Model Hyperparameters")
                    rq2_test_size_slider = gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3
        self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
        self.time_metrics = [c for c in self.numeric_cols if any, label="Test Set Size")
                    rq2_estimators_slider = gr.Slider(minimum=10(k in c.lower() for k in ['time', 'duration', 'fixation'])]
        
        , maximum=200, step=10, value=100, label="Number of Trees")# KEY FIX: Participant list is now derived ONLY from trials with valid fixation data.
        self.participant_list
                    rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.")
 = sorted(list(set([key[0] for key in self.fixation_data.keys()])))                with gr.Column(scale=2):
                    rq2_summary_output = gr.Markdown(label
        print(f"--- Data Loading Successful. Found {len(self.participant_list)} participants with fixation data.="Model Performance Summary")
                    rq2_table_output = gr.Dataframe(label="Classification Report", ---")
        return self

    def run_prediction_model(self, test_size, n_estimators interactive=False)
                    rq2_plot_output = gr.Plot(label="Feature Importance")
        ):
        leaky_features = ['Correct', 'participant_id']
        self.feature_names = [with gr.TabItem("πŸ‘οΈ Gaze Playback & Real-Time Prediction", id=2):
            col for col in self.combined_data.select_dtypes(include=np.number).columns if col not in leaky_with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### See the Prediction Efeatures]
        features = self.combined_data[self.feature_names].copy()
        target = self.combinedvolve with Every Glance!")
                    playback_participant = gr.Dropdown(choices=analyzer.participant_list, label_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
        valid="Select Participant")
                    playback_question = gr.Dropdown(choices=analyzer.questions, label="Select Question_indices = target.notna()
        features, target = features[valid_indices], target[valid_")
                    gr.Markdown("Use the slider to play back fixations one by one.")
                    playback_sliderindices]
        features = features.fillna(features.median()).fillna(0)
        if len(target = gr.Slider(minimum=0, maximum=1, step=1, value=0, label="Fix.unique()) < 2: return "Not enough data to train.", None, None
        X_train, X_testation Number", interactive=False)
                    playback_summary = gr.Markdown(label="Trial Info")
                with gr.Column(scale=2):
                    playback_plot = gr.Plot(label="Gaze Play, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
        self.scaler = StandardScaler().fitback & Live Prediction")

    outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status]
    outputs_playback = [playback_summary, playback(X_train)
        self.model = RandomForestClassifier(n_estimators=int(n_estimators), random_state=42, class_weight='balanced').fit(self.scaler.transform(X_train), y_train)
_plot, playback_slider]
    rq1_metric_dropdown.change(fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq        report = classification_report(y_test, self.model.predict(self.scaler.transform(X_test)), target_names=['Incorrect', 'Correct'], output_dict=True)
        auc_score =1_summary_output])
    rq2_test_size_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs roc_auc_score(y_test, self.model.predict_proba(self.scaler.transform(X_test))[:, 1])
        summary_md = f"### Model Performance\n- **AUC_rq2)
    rq2_estimators_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}"
        report_df = pd.DataFrame(report).transpose().round(3)
        feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature2)
    playback_inputs = [playback_participant, playback_question, playback_slider]
    playback_participant.change(lambda: 0, None, playback_slider).then(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback)
    playback_question.change(lambda_importances_}).sort_values('Importance', ascending=False).head(15)
        fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f': 0, None, playback_slider).then(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback)
    playback_slider.release(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback)

    demo.load(Top 15 Predictive Features', fontsize=14); plt.tight_layout()
        return summary_md, report_df, fig

    def _recalculate_features_from_fixations(self, fixations_df):fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq1_summary_output])
    demo.load(fn=analyzer.run_prediction
        feature_vector = pd.Series(0.0, index=self.feature_names)
        if fixations_df.empty: return feature_vector.fillna(0).values.reshape(1, -1)
        if 'AOI name' in fixations_df.columns:
            for aoi_name,_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs group in fixations_df.groupby('AOI name'):
                col_name = f'Total fixation duration on {aoi_name}'
                if col_name in feature_vector.index:
                    feature_vector[col_name] = group['Gaze event duration (ms)'].sum()
        feature_vector['Total Recording Duration'] = fixations_df['Gaze event duration (ms)'].sum()
        return feature_vector.fillna(0).values.reshape(1, -1)

    def generate_gaze_playback(self, participant, question, fixation_num):
        trial_key = (str(participant), question)
        if not participant or not question or trial_key not in self.fixation_data:
            return "**No fixation data found for this trial.**", None, gr.Slider(interactive=False, value=0)
        
        all_fixations = self.fixation_data[trial_key]
        fixation_num = int(fixation_num)
        slider_max = len(all_fixations)
        if fixation_num > slider_max: fixation_num = slider_max
        current_fixations = all_fixations.iloc[:fixation_num]
        
        partial_features = self._recalculate_features_from_fixations(current_fixations)
        prediction_prob = self.model.predict_proba(self.scaler.transform(partial_features))[0]
        prob_correct = prediction_prob[1]
        
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [4, 1]})
        fig.suptitle_rq2)

if __name__ == "__main__":
    demo.launch()