# app.py import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import seaborn as sns from scipy import stats from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, roc_auc_score import warnings import gradio as gr import os import git # --- Main Class --- warnings.filterwarnings('ignore') plt.style.use('default') sns.set_palette("husl") class EnhancedAIvsRealGazeAnalyzer: def __init__(self): self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6'] self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'} self.combined_data = None self.fixation_data = {} self.participant_list = [] self.model = None self.scaler = None self.feature_names = [] def _find_and_standardize_participant_col(self, df, filename): participant_col = next((c for c in df.columns if 'participant' in str(c).lower()), None) if not participant_col: raise ValueError(f"Could not find a 'participant' column in the file: {filename}") df.rename(columns={participant_col: 'participant_id'}, inplace=True) df['participant_id'] = df['participant_id'].astype(str) return df def load_and_process_data(self, base_path, response_file_path): print("--- Starting Robust Data Loading ---") response_df = pd.read_excel(response_file_path) response_df = self._find_and_standardize_participant_col(response_df, "GenAI Response.xlsx") for pair, ans in self.correct_answers.items(): if pair in response_df.columns: response_df[f'{pair}_Correct'] = (response_df[pair].astype(str).str.strip().str.upper() == ans) response_long = response_df.melt(id_vars=['participant_id'], value_vars=self.correct_answers.keys(), var_name='Pair') correctness_long = response_df.melt(id_vars=['participant_id'], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct') correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '') response_long = response_long.merge(correctness_long[['participant_id', 'Pair', 'Correct']], on=['participant_id', 'Pair']) all_metrics_dfs = [] for q in self.questions: file_path = f"{base_path summary_text, fig, gr.Slider(maximum=slider_max, value=fixation_num, interactive=True) def analyze_rq1_metric(self, metric): if not metric or metric not in self.combined_data.columns: return None, "Metric not found." correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna() incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna() if len(correct) < 2 or len(incorrect) < 2: return None, "Not enough data for both groups to compare." t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit') fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout() summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}""" return fig, summary # --- DATA SETUP & GRADIO APP --- def setup_and_load_data(): repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset" repo_dir = "GenAIEyeTrackingCleanedDataset" if not os.path.exists(repo_dir): git.Repo.clone_from(repo_url, repo_dir) else: print("Data repository already exists.") base_path = repo_dir response_file_path = os.path.join(repo_dir, "GenAI Response.xlsx") analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file_path) return analyzer analyzer = setup_and_load_data() with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis") with gr.Tabs() as tabs: with gr.TabItem("📊 RQ1: Viewing Time vs. Correctness", id=0): # ... (UI is the same) with gr.TabItem("🤖 RQ2: Predicting Correctness from Gaze", id=1): with gr.Row(): with gr.Column(scale=1): gr.Markdown("#### Tune Model Hyperparameters") rq2_test_size_slider=gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size") rq2_estimators_slider=gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees") rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.") with gr.Column(scale=2): # ... (UI is the same) with gr.TabItem("👁️ Gaze Playback & Real-Time Prediction", id=2): }/Filtered_GenAI_Metrics_cleaned_{q}.xlsx" if os.path.exists(file_path): xls = pd.ExcelFile(file_path) metrics_df = pd.read_excel(xls, sheet_name=0) metrics_df = self._find_and_standardize_participant_col(metrics_df, f"{q} Metrics") metrics_df['Question'] = q all_metrics_dfs.append(metrics_df) if len(xls.sheet_names) > 1: try: fix_df = pd.read_excel(xls, sheet_name=1) fix_df = self._find_and_standardize_participant_col(fix_df, f"{q} Fixations") fix_df.dropna(subset=['Fixation point X', 'Fixation point Y', 'Gaze event duration (ms)'], inplace=True) for participant, group in fix_df.groupby('participant_id'): self.fixation_data[(participant, q)] = group.reset_index(drop=True) except Exception as e: print(f" -> WARNING: Could not load fixation sheet for {q}. Error: {e}") if not all_metrics_dfs: raise ValueError("No aggregated metrics files were found.") self.combined_data = pd.concat(all_metrics_dfs, ignore_index=True) q_to_pair# ... (UI is the same) # The UI structure is identical to before, just add the new status component # This is a bit of a rewrite to use the ids for clarity. with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis") with gr.Tabs() as tabs: with gr.TabItem("📊 RQ1: Viewing Time vs. Correctness", id=0): with gr.Row(): with gr.Column(scale=1): rq1_metric_dropdown = gr.Dropdown(choices=analyzer.time_metrics = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)} self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair) self.combined_data = self.combined_data.merge(response_long, on=['participant_id', 'Pair'], how='left') self.combined_data['Answer_Correctness, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None) rq1_summary_output = gr.Markdown(label="Statistical Summary") with gr.Column(scale=2): rq1_plot_output = gr.Plot(label="Metric Comparison") with gr.TabItem("🤖 RQ2: Predicting Correctness from Gaze", id=1): with gr.Row(): with gr.Column(scale=1): gr'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'}) .Markdown("#### Tune Model Hyperparameters") rq2_test_size_slider = gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3 self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist() self.time_metrics = [c for c in self.numeric_cols if any, label="Test Set Size") rq2_estimators_slider = gr.Slider(minimum=10(k in c.lower() for k in ['time', 'duration', 'fixation'])] , maximum=200, step=10, value=100, label="Number of Trees")# KEY FIX: Participant list is now derived ONLY from trials with valid fixation data. self.participant_list rq2_status = gr.Markdown("Train a model to enable the Gaze Playback tab.") = sorted(list(set([key[0] for key in self.fixation_data.keys()]))) with gr.Column(scale=2): rq2_summary_output = gr.Markdown(label print(f"--- Data Loading Successful. Found {len(self.participant_list)} participants with fixation data.="Model Performance Summary") rq2_table_output = gr.Dataframe(label="Classification Report", ---") return self def run_prediction_model(self, test_size, n_estimators interactive=False) rq2_plot_output = gr.Plot(label="Feature Importance") ): leaky_features = ['Correct', 'participant_id'] self.feature_names = [with gr.TabItem("👁️ Gaze Playback & Real-Time Prediction", id=2): col for col in self.combined_data.select_dtypes(include=np.number).columns if col not in leaky_with gr.Row(): with gr.Column(scale=1): gr.Markdown("### See the Prediction Efeatures] features = self.combined_data[self.feature_names].copy() target = self.combinedvolve with Every Glance!") playback_participant = gr.Dropdown(choices=analyzer.participant_list, label_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0}) valid="Select Participant") playback_question = gr.Dropdown(choices=analyzer.questions, label="Select Question_indices = target.notna() features, target = features[valid_indices], target[valid_") gr.Markdown("Use the slider to play back fixations one by one.") playback_sliderindices] features = features.fillna(features.median()).fillna(0) if len(target = gr.Slider(minimum=0, maximum=1, step=1, value=0, label="Fix.unique()) < 2: return "Not enough data to train.", None, None X_train, X_testation Number", interactive=False) playback_summary = gr.Markdown(label="Trial Info") with gr.Column(scale=2): playback_plot = gr.Plot(label="Gaze Play, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target) self.scaler = StandardScaler().fitback & Live Prediction") outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output, rq2_status] outputs_playback = [playback_summary, playback(X_train) self.model = RandomForestClassifier(n_estimators=int(n_estimators), random_state=42, class_weight='balanced').fit(self.scaler.transform(X_train), y_train) _plot, playback_slider] rq1_metric_dropdown.change(fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq report = classification_report(y_test, self.model.predict(self.scaler.transform(X_test)), target_names=['Incorrect', 'Correct'], output_dict=True) auc_score =1_summary_output]) rq2_test_size_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs roc_auc_score(y_test, self.model.predict_proba(self.scaler.transform(X_test))[:, 1]) summary_md = f"### Model Performance\n- **AUC_rq2) rq2_estimators_slider.release(fn=analyzer.run_prediction_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}" report_df = pd.DataFrame(report).transpose().round(3) feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature2) playback_inputs = [playback_participant, playback_question, playback_slider] playback_participant.change(lambda: 0, None, playback_slider).then(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback) playback_question.change(lambda_importances_}).sort_values('Importance', ascending=False).head(15) fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f': 0, None, playback_slider).then(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback) playback_slider.release(fn=analyzer.generate_gaze_playback, inputs=playback_inputs, outputs=outputs_playback) demo.load(Top 15 Predictive Features', fontsize=14); plt.tight_layout() return summary_md, report_df, fig def _recalculate_features_from_fixations(self, fixations_df):fn=analyzer.analyze_rq1_metric, inputs=rq1_metric_dropdown, outputs=[rq1_plot_output, rq1_summary_output]) demo.load(fn=analyzer.run_prediction feature_vector = pd.Series(0.0, index=self.feature_names) if fixations_df.empty: return feature_vector.fillna(0).values.reshape(1, -1) if 'AOI name' in fixations_df.columns: for aoi_name,_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs group in fixations_df.groupby('AOI name'): col_name = f'Total fixation duration on {aoi_name}' if col_name in feature_vector.index: feature_vector[col_name] = group['Gaze event duration (ms)'].sum() feature_vector['Total Recording Duration'] = fixations_df['Gaze event duration (ms)'].sum() return feature_vector.fillna(0).values.reshape(1, -1) def generate_gaze_playback(self, participant, question, fixation_num): trial_key = (str(participant), question) if not participant or not question or trial_key not in self.fixation_data: return "**No fixation data found for this trial.**", None, gr.Slider(interactive=False, value=0) all_fixations = self.fixation_data[trial_key] fixation_num = int(fixation_num) slider_max = len(all_fixations) if fixation_num > slider_max: fixation_num = slider_max current_fixations = all_fixations.iloc[:fixation_num] partial_features = self._recalculate_features_from_fixations(current_fixations) prediction_prob = self.model.predict_proba(self.scaler.transform(partial_features))[0] prob_correct = prediction_prob[1] fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), gridspec_kw={'height_ratios': [4, 1]}) fig.suptitle_rq2) if __name__ == "__main__": demo.launch()