clockclock's picture
Update app.py
173fd35 verified
raw
history blame
4.46 kB
# app.py
import gradio as gr
import torch
from diffusers import AutoPipelineForInpainting
from PIL import Image
import time
# --- Model Loading (CPU Version) ---
print("Loading model on CPU... This may take several minutes.")
pipe = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting" # Using the slightly smaller 1.5 model for better CPU performance
)
print("Model loaded successfully.")
# --- Default "Magic" Prompts ---
# These will be used if the user doesn't provide their own prompt.
DEFAULT_PROMPT = "photorealistic, 4k, ultra high quality, sharp focus, masterpiece, high detail, professional photo"
DEFAULT_NEGATIVE_PROMPT = "blurry, pixelated, distorted, deformed, ugly, disfigured, cartoon, anime, low quality, watermark, text"
# --- The Inpainting Function ---
# It now handles the logic for an optional user prompt.
def inpaint_image(input_dict, user_prompt, guidance_scale, num_steps, progress=gr.Progress()):
"""
Performs inpainting. Uses a default prompt if the user_prompt is empty.
"""
image = input_dict["image"].convert("RGB")
mask_image = input_dict["mask"].convert("RGB")
# --- This is the core logic for the hybrid approach ---
if user_prompt and user_prompt.strip():
# If the user provided a prompt, use it.
prompt = user_prompt
# For custom prompts, a general negative prompt is still useful.
negative_prompt = DEFAULT_NEGATIVE_PROMPT
print(f"Using custom prompt: '{prompt}'")
else:
# If the user left the prompt box empty, use our high-quality defaults.
prompt = DEFAULT_PROMPT
negative_prompt = DEFAULT_NEGATIVE_PROMPT
print(f"User prompt is empty. Using default 'General Fix' prompt.")
print(f"Starting inpainting on CPU...")
start_time = time.time()
# Callback to update the progress bar in the UI
def progress_callback(step, timestep, latents):
progress(step / int(num_steps), desc=f"Running step {step}/{int(num_steps)}")
# Run the pipeline
result_image = pipe(
prompt=prompt,
image=image,
mask_image=mask_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=int(num_steps),
callback_steps=1,
callback=progress_callback,
).images[0]
end_time = time.time()
print(f"Inpainting finished in {end_time - start_time:.2f} seconds.")
return result_image
# --- Gradio User Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🎨 AI Image Fixer
**How to use:**
1. Upload an image.
2. Use the brush to **paint over the area you want to fix**.
3. **(Optional)** For precise control, write a custom prompt describing the fix.
4. **(Easy Mode)** Or, just leave the prompt box empty for a general quality improvement.
5. Click "Fix It!"
"""
)
gr.Warning(
"⚠️ This Space is running on a free CPU. "
"Image generation will be VERY SLOW (expect 5-15 minutes). "
"A progress bar will show the status below the button. Please be patient!"
)
with gr.Row():
# Input Column
with gr.Column(scale=2):
input_image = gr.Image(
label="1. Upload & Mask Image",
source="upload",
tool="brush",
type="pil"
)
# The prompt textbox is back, but now it's optional!
prompt_textbox = gr.Textbox(
label="2. Describe Your Fix (Optional)",
placeholder="Leave empty for a general fix, or type e.g., 'a perfect human hand'"
)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Slider(minimum=0, maximum=20, value=8.0, label="Guidance Scale")
num_steps = gr.Slider(minimum=10, maximum=50, step=1, value=25, label="Inference Steps")
# Output Column
with gr.Column(scale=1):
output_image = gr.Image(label="Result", type="pil")
submit_button = gr.Button("Fix It!", variant="primary")
submit_button.click(
fn=inpaint_image,
inputs=[input_image, prompt_textbox, guidance_scale, num_steps],
outputs=output_image
)
if __name__ == "__main__":
demo.launch()