Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
|
@@ -6,64 +6,95 @@ from diffusers import AutoPipelineForInpainting
|
|
| 6 |
from PIL import Image
|
| 7 |
import time
|
| 8 |
|
| 9 |
-
# --- Model Loading ---
|
| 10 |
-
print("Loading model for low-RAM CPU environment...")
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
try:
|
| 13 |
-
pipe = AutoPipelineForInpainting.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
pipe.enable_model_cpu_offload()
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
except Exception as e:
|
| 17 |
-
print(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
raise e
|
| 19 |
|
| 20 |
-
# --- Prompts ---
|
| 21 |
-
DEFAULT_PROMPT = "photorealistic, 4k, ultra high quality, sharp focus, masterpiece, high detail"
|
| 22 |
-
DEFAULT_NEGATIVE_PROMPT = "blurry, pixelated, distorted, deformed, ugly, disfigured, cartoon, watermark"
|
| 23 |
|
| 24 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def inpaint_image(image_and_mask, user_prompt, guidance_scale, num_steps, progress=gr.Progress(track_tqdm=True)):
|
| 26 |
-
# The input is now a dictionary with 'image' and 'mask' keys
|
| 27 |
-
image = image_and_mask["image"].convert("RGB")
|
| 28 |
-
mask = image_and_mask["mask"].convert("RGB")
|
| 29 |
|
| 30 |
-
if
|
| 31 |
raise gr.Error("Please upload an image and draw a mask on it first!")
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
if user_prompt and user_prompt.strip():
|
| 34 |
prompt = user_prompt
|
| 35 |
negative_prompt = DEFAULT_NEGATIVE_PROMPT
|
|
|
|
| 36 |
else:
|
| 37 |
prompt = DEFAULT_PROMPT
|
| 38 |
negative_prompt = DEFAULT_NEGATIVE_PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
print(f"Starting inpainting on CPU...")
|
| 41 |
result_image = pipe(
|
| 42 |
-
prompt=prompt,
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
).images[0]
|
| 45 |
|
|
|
|
|
|
|
| 46 |
return result_image
|
| 47 |
|
| 48 |
-
|
|
|
|
| 49 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 50 |
-
gr.Markdown("# 🎨 AI Image Fixer (
|
| 51 |
-
gr.Warning(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Column(scale=2):
|
| 55 |
-
# This component returns a dictionary when tool='brush'
|
| 56 |
input_image = gr.Image(label="1. Upload & Mask Image", source="upload", tool="brush", type="pil")
|
| 57 |
prompt_textbox = gr.Textbox(label="2. Describe Your Fix (Optional)", placeholder="Leave empty for a general fix")
|
| 58 |
with gr.Accordion("Advanced Settings", open=False):
|
| 59 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=8.0, label="Guidance Scale")
|
| 60 |
-
num_steps = gr.Slider(minimum=10, maximum=50, step=1, value=20, label="Inference Steps")
|
| 61 |
with gr.Column(scale=1):
|
| 62 |
output_image = gr.Image(label="Result", type="pil")
|
| 63 |
|
| 64 |
submit_button = gr.Button("Fix It!", variant="primary")
|
| 65 |
|
| 66 |
-
# The `inputs` list is simple. The function signature must match what Gradio provides.
|
| 67 |
submit_button.click(
|
| 68 |
fn=inpaint_image,
|
| 69 |
inputs=[input_image, prompt_textbox, guidance_scale, num_steps],
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import time
|
| 8 |
|
| 9 |
+
# --- Model Loading (Final, Most Stable Version) ---
|
| 10 |
+
print("Loading the definitive model for low-RAM CPU environment...")
|
| 11 |
+
# We are using the more modern and reliable SD 2.0 Inpainting model.
|
| 12 |
+
# This model is better packaged and less prone to loading errors.
|
| 13 |
+
model_id = "stabilityai/stable-diffusion-2-inpainting"
|
| 14 |
+
|
| 15 |
try:
|
| 16 |
+
pipe = AutoPipelineForInpainting.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
+
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
| 19 |
+
safety_checker=None # Proactively disable the safety checker to save memory
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Enable CPU offloading to prevent memory crashes. This is essential.
|
| 23 |
pipe.enable_model_cpu_offload()
|
| 24 |
+
|
| 25 |
+
print("Model loaded successfully. The application is ready.")
|
| 26 |
+
|
| 27 |
except Exception as e:
|
| 28 |
+
print("="*80)
|
| 29 |
+
print("A FATAL ERROR OCCURRED DURING MODEL LOADING. The app cannot start.")
|
| 30 |
+
print(f"Error: {e}")
|
| 31 |
+
print("This is likely due to the free hardware tier not having enough resources.")
|
| 32 |
+
print("="*80)
|
| 33 |
raise e
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# --- Default "Magic" Prompts ---
|
| 37 |
+
DEFAULT_PROMPT = "photorealistic, 4k, ultra high quality, sharp focus, masterpiece, high detail, professional photo"
|
| 38 |
+
DEFAULT_NEGATIVE_PROMPT = "blurry, pixelated, distorted, deformed, ugly, disfigured, cartoon, anime, low quality, watermark, text"
|
| 39 |
+
|
| 40 |
+
# --- The Inpainting Function ---
|
| 41 |
+
# This function signature is correct for how Gradio's Image tool works.
|
| 42 |
def inpaint_image(image_and_mask, user_prompt, guidance_scale, num_steps, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
if image_and_mask is None or "image" not in image_and_mask or "mask" not in image_and_mask:
|
| 45 |
raise gr.Error("Please upload an image and draw a mask on it first!")
|
| 46 |
|
| 47 |
+
# The input is a dictionary with 'image' and 'mask' keys
|
| 48 |
+
image = image_and_mask["image"].convert("RGB")
|
| 49 |
+
mask = image_and_mask["mask"].convert("RGB")
|
| 50 |
+
|
| 51 |
if user_prompt and user_prompt.strip():
|
| 52 |
prompt = user_prompt
|
| 53 |
negative_prompt = DEFAULT_NEGATIVE_PROMPT
|
| 54 |
+
print(f"Using custom prompt: '{prompt}'")
|
| 55 |
else:
|
| 56 |
prompt = DEFAULT_PROMPT
|
| 57 |
negative_prompt = DEFAULT_NEGATIVE_PROMPT
|
| 58 |
+
print(f"User prompt is empty. Using default 'General Fix' prompt.")
|
| 59 |
+
|
| 60 |
+
print(f"Starting inpainting on CPU (with offloading)... This will be very slow.")
|
| 61 |
+
start_time = time.time()
|
| 62 |
|
|
|
|
| 63 |
result_image = pipe(
|
| 64 |
+
prompt=prompt,
|
| 65 |
+
image=image,
|
| 66 |
+
mask_image=mask,
|
| 67 |
+
negative_prompt=negative_prompt,
|
| 68 |
+
guidance_scale=guidance_scale,
|
| 69 |
+
num_inference_steps=int(num_steps),
|
| 70 |
).images[0]
|
| 71 |
|
| 72 |
+
end_time = time.time()
|
| 73 |
+
print(f"Inpainting finished in {end_time - start_time:.2f} seconds.")
|
| 74 |
return result_image
|
| 75 |
|
| 76 |
+
|
| 77 |
+
# --- Gradio User Interface ---
|
| 78 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 79 |
+
gr.Markdown("# 🎨 AI Image Fixer (Definitive Version)")
|
| 80 |
+
gr.Warning(
|
| 81 |
+
"‼️ **PATIENCE REQUIRED!** This app is running on a free CPU. "
|
| 82 |
+
"Generation will be **extremely slow (potentially 20-40 minutes)** due to memory-saving measures. "
|
| 83 |
+
"This is necessary to prevent crashes. The progress bar will appear after you click the button."
|
| 84 |
+
)
|
| 85 |
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column(scale=2):
|
|
|
|
| 88 |
input_image = gr.Image(label="1. Upload & Mask Image", source="upload", tool="brush", type="pil")
|
| 89 |
prompt_textbox = gr.Textbox(label="2. Describe Your Fix (Optional)", placeholder="Leave empty for a general fix")
|
| 90 |
with gr.Accordion("Advanced Settings", open=False):
|
| 91 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=8.0, label="Guidance Scale")
|
| 92 |
+
num_steps = gr.Slider(minimum=10, maximum=50, step=1, value=20, label="Inference Steps (Fewer is faster)")
|
| 93 |
with gr.Column(scale=1):
|
| 94 |
output_image = gr.Image(label="Result", type="pil")
|
| 95 |
|
| 96 |
submit_button = gr.Button("Fix It!", variant="primary")
|
| 97 |
|
|
|
|
| 98 |
submit_button.click(
|
| 99 |
fn=inpaint_image,
|
| 100 |
inputs=[input_image, prompt_textbox, guidance_scale, num_steps],
|