Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
from captum.attr import LayerGradCam
|
| 7 |
+
from captum.attr import visualization as viz
|
| 8 |
+
import requests
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
import warnings
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# Suppress warnings for cleaner output
|
| 14 |
+
warnings.filterwarnings("ignore")
|
| 15 |
+
|
| 16 |
+
# Force CPU usage for Hugging Face Spaces
|
| 17 |
+
device = torch.device("cpu")
|
| 18 |
+
torch.set_num_threads(1) # Optimize for CPU usage
|
| 19 |
+
|
| 20 |
+
# --- 1. Load Model and Processor ---
|
| 21 |
+
print("Loading model and processor...")
|
| 22 |
+
try:
|
| 23 |
+
model_id = "Organika/sdxl-detector"
|
| 24 |
+
processor = AutoImageProcessor.from_pretrained(model_id)
|
| 25 |
+
|
| 26 |
+
# Load model with CPU-optimized settings
|
| 27 |
+
model = AutoModelForImageClassification.from_pretrained(
|
| 28 |
+
model_id,
|
| 29 |
+
torch_dtype=torch.float32,
|
| 30 |
+
device_map="cpu",
|
| 31 |
+
low_cpu_mem_usage=True
|
| 32 |
+
)
|
| 33 |
+
model.to(device)
|
| 34 |
+
model.eval()
|
| 35 |
+
print("Model and processor loaded successfully on CPU.")
|
| 36 |
+
except Exception as e:
|
| 37 |
+
print(f"Error loading model: {e}")
|
| 38 |
+
raise
|
| 39 |
+
|
| 40 |
+
# --- 2. Define the Explainability (Grad-CAM) Function ---
|
| 41 |
+
def generate_heatmap(image_tensor, original_image, target_class_index):
|
| 42 |
+
try:
|
| 43 |
+
# Ensure tensor is on CPU
|
| 44 |
+
image_tensor = image_tensor.to(device)
|
| 45 |
+
|
| 46 |
+
# Define wrapper function for model forward pass
|
| 47 |
+
def model_forward_wrapper(input_tensor):
|
| 48 |
+
with torch.no_grad(): # Save memory during attribution
|
| 49 |
+
outputs = model(pixel_values=input_tensor)
|
| 50 |
+
return outputs.logits
|
| 51 |
+
|
| 52 |
+
# Get the target layer for Grad-CAM
|
| 53 |
+
# For SWIN transformer, use the layer normalization layer
|
| 54 |
+
target_layer = model.swin.layernorm
|
| 55 |
+
|
| 56 |
+
# Initialize LayerGradCam with the wrapper function
|
| 57 |
+
lgc = LayerGradCam(model_forward_wrapper, target_layer)
|
| 58 |
+
|
| 59 |
+
# Generate attributions
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
attributions = lgc.attribute(
|
| 62 |
+
image_tensor,
|
| 63 |
+
target=target_class_index,
|
| 64 |
+
relu_attributions=True
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Convert attributions to numpy for visualization
|
| 68 |
+
heatmap = np.transpose(
|
| 69 |
+
attributions.squeeze(0).cpu().detach().numpy(),
|
| 70 |
+
(1, 2, 0)
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Create visualization
|
| 74 |
+
visualized_image, _ = viz.visualize_image_attr(
|
| 75 |
+
heatmap,
|
| 76 |
+
np.array(original_image),
|
| 77 |
+
method="blended_heat_map",
|
| 78 |
+
sign="all",
|
| 79 |
+
show_colorbar=True,
|
| 80 |
+
title="AI Detection Heatmap",
|
| 81 |
+
alpha_overlay=0.6
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
return visualized_image
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
print(f"Error generating heatmap: {e}")
|
| 88 |
+
# Return original image if heatmap generation fails
|
| 89 |
+
return np.array(original_image)
|
| 90 |
+
|
| 91 |
+
# --- 3. Main Prediction Function ---
|
| 92 |
+
def predict(image_upload: Image.Image, image_url: str):
|
| 93 |
+
try:
|
| 94 |
+
# Determine input source
|
| 95 |
+
if image_upload is not None:
|
| 96 |
+
input_image = image_upload
|
| 97 |
+
print(f"Processing uploaded image of size: {input_image.size}")
|
| 98 |
+
elif image_url and image_url.strip():
|
| 99 |
+
try:
|
| 100 |
+
response = requests.get(image_url, timeout=10)
|
| 101 |
+
response.raise_for_status()
|
| 102 |
+
input_image = Image.open(BytesIO(response.content))
|
| 103 |
+
print(f"Processing image from URL: {image_url}")
|
| 104 |
+
except Exception as e:
|
| 105 |
+
raise gr.Error(f"Could not load image from URL. Please check the link. Error: {e}")
|
| 106 |
+
else:
|
| 107 |
+
raise gr.Error("Please upload an image or provide a URL to analyze.")
|
| 108 |
+
|
| 109 |
+
# Convert RGBA to RGB if necessary
|
| 110 |
+
if input_image.mode == 'RGBA':
|
| 111 |
+
input_image = input_image.convert('RGB')
|
| 112 |
+
|
| 113 |
+
# Resize image if too large to save memory
|
| 114 |
+
max_size = 512
|
| 115 |
+
if max(input_image.size) > max_size:
|
| 116 |
+
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
| 117 |
+
|
| 118 |
+
# Process image
|
| 119 |
+
inputs = processor(images=input_image, return_tensors="pt")
|
| 120 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 121 |
+
|
| 122 |
+
# Make prediction
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
outputs = model(**inputs)
|
| 125 |
+
logits = outputs.logits
|
| 126 |
+
|
| 127 |
+
# Calculate probabilities
|
| 128 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 129 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 130 |
+
confidence_score = probabilities[0][predicted_class_idx].item()
|
| 131 |
+
predicted_label = model.config.id2label[predicted_class_idx]
|
| 132 |
+
|
| 133 |
+
# Generate explanation
|
| 134 |
+
if predicted_label.lower() == 'ai':
|
| 135 |
+
explanation = (
|
| 136 |
+
f"🤖 The model is {confidence_score:.2%} confident that this image is **AI-GENERATED**.\n\n"
|
| 137 |
+
"The heatmap highlights areas that most influenced this decision. "
|
| 138 |
+
"Red/warm areas indicate regions that appear artificial or AI-generated. "
|
| 139 |
+
"Pay attention to details like skin texture, hair, eyes, or background inconsistencies."
|
| 140 |
+
)
|
| 141 |
+
else:
|
| 142 |
+
explanation = (
|
| 143 |
+
f"👤 The model is {confidence_score:.2%} confident that this image is **HUMAN-MADE**.\n\n"
|
| 144 |
+
"The heatmap shows areas the model considers natural and realistic. "
|
| 145 |
+
"Red/warm areas indicate regions with authentic, human-created characteristics "
|
| 146 |
+
"that AI models typically struggle to replicate perfectly."
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
print("Generating heatmap...")
|
| 150 |
+
heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx)
|
| 151 |
+
print("Heatmap generated successfully.")
|
| 152 |
+
|
| 153 |
+
# Create labels dictionary for gradio output
|
| 154 |
+
labels_dict = {
|
| 155 |
+
model.config.id2label[i]: float(probabilities[0][i])
|
| 156 |
+
for i in range(len(model.config.id2label))
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
return labels_dict, explanation, heatmap_image
|
| 160 |
+
|
| 161 |
+
except Exception as e:
|
| 162 |
+
print(f"Error in prediction: {e}")
|
| 163 |
+
raise gr.Error(f"An error occurred during prediction: {str(e)}")
|
| 164 |
+
|
| 165 |
+
# --- 4. Gradio Interface ---
|
| 166 |
+
with gr.Blocks(
|
| 167 |
+
theme=gr.themes.Soft(),
|
| 168 |
+
title="AI Image Detector",
|
| 169 |
+
css="""
|
| 170 |
+
.gradio-container {
|
| 171 |
+
max-width: 1200px !important;
|
| 172 |
+
}
|
| 173 |
+
.tab-nav {
|
| 174 |
+
margin-bottom: 1rem;
|
| 175 |
+
}
|
| 176 |
+
"""
|
| 177 |
+
) as demo:
|
| 178 |
+
gr.Markdown(
|
| 179 |
+
"""
|
| 180 |
+
# 🔍 AI Image Detector with Explainability
|
| 181 |
+
|
| 182 |
+
Determine if an image is AI-generated or human-made using advanced machine learning.
|
| 183 |
+
|
| 184 |
+
**Features:**
|
| 185 |
+
- 🎯 High-accuracy detection using the Organika/sdxl-detector model
|
| 186 |
+
- 🔥 **Heatmap visualization** showing which areas influenced the decision
|
| 187 |
+
- 📱 Support for both file uploads and URL inputs
|
| 188 |
+
- ⚡ Optimized for CPU deployment
|
| 189 |
+
|
| 190 |
+
**How to use:** Upload an image or paste a URL, then click "Analyze Image" to see the results and heatmap.
|
| 191 |
+
"""
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
with gr.Row():
|
| 195 |
+
with gr.Column(scale=1):
|
| 196 |
+
gr.Markdown("### 📥 Input")
|
| 197 |
+
|
| 198 |
+
with gr.Tabs():
|
| 199 |
+
with gr.TabItem("📁 Upload File"):
|
| 200 |
+
input_image_upload = gr.Image(
|
| 201 |
+
type="pil",
|
| 202 |
+
label="Upload Your Image",
|
| 203 |
+
height=300
|
| 204 |
+
)
|
| 205 |
+
with gr.TabItem("🔗 Use URL"):
|
| 206 |
+
input_image_url = gr.Textbox(
|
| 207 |
+
label="Paste Image URL here",
|
| 208 |
+
placeholder="https://example.com/image.jpg"
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
submit_btn = gr.Button(
|
| 212 |
+
"🔍 Analyze Image",
|
| 213 |
+
variant="primary",
|
| 214 |
+
size="lg"
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
gr.Markdown(
|
| 218 |
+
"""
|
| 219 |
+
### ℹ️ Tips
|
| 220 |
+
- Supported formats: JPG, PNG, WebP
|
| 221 |
+
- Images are automatically resized for optimal processing
|
| 222 |
+
- For best results, use clear, high-quality images
|
| 223 |
+
"""
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
with gr.Column(scale=2):
|
| 227 |
+
gr.Markdown("### 📊 Results")
|
| 228 |
+
|
| 229 |
+
with gr.Row():
|
| 230 |
+
with gr.Column():
|
| 231 |
+
output_label = gr.Label(
|
| 232 |
+
label="Prediction Confidence",
|
| 233 |
+
num_top_classes=2
|
| 234 |
+
)
|
| 235 |
+
with gr.Column():
|
| 236 |
+
output_text = gr.Textbox(
|
| 237 |
+
label="Detailed Explanation",
|
| 238 |
+
lines=6,
|
| 239 |
+
interactive=False
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
output_heatmap = gr.Image(
|
| 243 |
+
label="🔥 AI Detection Heatmap - Red areas influenced the decision most",
|
| 244 |
+
height=400
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# Connect the interface
|
| 248 |
+
submit_btn.click(
|
| 249 |
+
fn=predict,
|
| 250 |
+
inputs=[input_image_upload, input_image_url],
|
| 251 |
+
outputs=[output_label, output_text, output_heatmap]
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# Add examples
|
| 255 |
+
gr.Examples(
|
| 256 |
+
examples=[
|
| 257 |
+
["https://images.unsplash.com/photo-1494790108755-2616b612b786", ""],
|
| 258 |
+
["https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d", ""],
|
| 259 |
+
],
|
| 260 |
+
inputs=[input_image_url, input_image_upload],
|
| 261 |
+
outputs=[output_label, output_text, output_heatmap],
|
| 262 |
+
fn=predict,
|
| 263 |
+
cache_examples=False
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
# --- 5. Launch the App ---
|
| 267 |
+
if __name__ == "__main__":
|
| 268 |
+
demo.launch(
|
| 269 |
+
debug=False,
|
| 270 |
+
share=False,
|
| 271 |
+
server_name="0.0.0.0",
|
| 272 |
+
server_port=7860
|
| 273 |
+
)
|
| 274 |
+
|