Upload 24 files
Browse files- .gitattributes +4 -0
- README.md +6 -6
- app.py +496 -0
- chroma_NCS_241230/chroma.sqlite3 +3 -0
- chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/data_level0.bin +3 -0
- chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/header.bin +3 -0
- chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/index_metadata.pickle +3 -0
- chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/length.bin +3 -0
- chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/link_lists.bin +3 -0
- chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/data_level0.bin +3 -0
- chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/header.bin +3 -0
- chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/index_metadata.pickle +3 -0
- chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/length.bin +3 -0
- chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/link_lists.bin +3 -0
- chroma_kpi_250416/chroma.sqlite3 +3 -0
- chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/data_level0.bin +3 -0
- chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/header.bin +3 -0
- chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/index_metadata.pickle +3 -0
- chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/length.bin +3 -0
- chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/link_lists.bin +3 -0
- chroma_kpi_250528_SBERT/chroma.sqlite3 +3 -0
- chroma_kpi_250707_SBERTjhgan/8022c180-484c-40e6-8793-a686ab1771e8/index_metadata.pickle +3 -0
- chroma_kpi_250707_SBERTjhgan/chroma.sqlite3 +3 -0
- requirements.txt +12 -0
- template.xlsx +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
chroma_kpi_250416/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
chroma_kpi_250528_SBERT/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
chroma_kpi_250707_SBERTjhgan/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
chroma_NCS_241230/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: KPI POOL 검색
|
| 3 |
+
emoji: 🏃
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.31.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_chroma import Chroma
|
| 2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
+
from openpyxl import load_workbook
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
# Chroma DB 로드
|
| 12 |
+
###기본(BGE)
|
| 13 |
+
model_huggingface_ori = HuggingFaceEmbeddings(model_name='BAAI/bge-m3')
|
| 14 |
+
persist_directory_ori = './chroma_kpi_250416'
|
| 15 |
+
kpi_pool_ori = Chroma(persist_directory=persist_directory_ori, embedding_function=model_huggingface_ori)
|
| 16 |
+
print(kpi_pool_ori._collection.count())
|
| 17 |
+
|
| 18 |
+
persist_directory_ori2 = './chroma_ncs_241230'
|
| 19 |
+
ncs_db_ori = Chroma(persist_directory=persist_directory_ori2, embedding_function=model_huggingface_ori)
|
| 20 |
+
print(ncs_db_ori._collection.count())
|
| 21 |
+
|
| 22 |
+
###
|
| 23 |
+
|
| 24 |
+
model_huggingface = HuggingFaceEmbeddings(model_name='snunlp/KR-SBERT-V40K-klueNLI-augSTS')
|
| 25 |
+
persist_directory1 = './chroma_kpi_250528_SBERT'
|
| 26 |
+
kpi_pool = Chroma(persist_directory=persist_directory1, embedding_function=model_huggingface)
|
| 27 |
+
print(kpi_pool._collection.count())
|
| 28 |
+
|
| 29 |
+
####
|
| 30 |
+
|
| 31 |
+
model_huggingface2 = HuggingFaceEmbeddings(model_name='jhgan/ko-sbert-sts')
|
| 32 |
+
persist_directory_jhgan1 = './chroma_kpi_250707_SBERTjhgan'
|
| 33 |
+
kpi_pool2 = Chroma(persist_directory=persist_directory_jhgan1, embedding_function=model_huggingface2)
|
| 34 |
+
print(kpi_pool2._collection.count())
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def search_unit(unit_query):
|
| 38 |
+
results = ncs_db_ori.similarity_search_with_relevance_scores(unit_query, k=7)
|
| 39 |
+
|
| 40 |
+
# 검색 결과 텍스트 포맷팅
|
| 41 |
+
text = ""
|
| 42 |
+
for i, doc in enumerate(results):
|
| 43 |
+
# 텍스트와 메타데이터 처리
|
| 44 |
+
unit = doc[0].page_content.replace(", ", " / ")
|
| 45 |
+
job_name = doc[0].metadata['세분류코드명']
|
| 46 |
+
|
| 47 |
+
# 코드 계층 처리
|
| 48 |
+
code = [
|
| 49 |
+
doc[0].metadata['대분류코드명'],
|
| 50 |
+
doc[0].metadata['중분류코드명'],
|
| 51 |
+
doc[0].metadata['소분류코드명']
|
| 52 |
+
]
|
| 53 |
+
code_str = " > ".join(code)
|
| 54 |
+
|
| 55 |
+
# 텍스트 포맷팅
|
| 56 |
+
similarity = round(doc[1], 3)
|
| 57 |
+
text += f"""
|
| 58 |
+
<span style="font-size: 18px;">**[{i+1}] {job_name}**</span>
|
| 59 |
+
<span style="font-size: 13px;"> | {code_str} | similarity {similarity} </span>
|
| 60 |
+
<br> {unit} <br>
|
| 61 |
+
"""
|
| 62 |
+
return text
|
| 63 |
+
|
| 64 |
+
def search_unit_all(unit_query):
|
| 65 |
+
text_bge = search_unit(unit_query, "BGE")
|
| 66 |
+
text_snu = search_unit(unit_query, "SBERT-snunlp")
|
| 67 |
+
#text_jh = search_unit(unit_query, "SBERT-jhgan")
|
| 68 |
+
|
| 69 |
+
return text_bge, text_snu
|
| 70 |
+
|
| 71 |
+
downsample_model_ori = SentenceTransformer('BAAI/bge-m3')
|
| 72 |
+
downsample_model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
|
| 73 |
+
downsample_model_2 = SentenceTransformer('jhgan/ko-sbert-sts')
|
| 74 |
+
|
| 75 |
+
def filter_semantically_similar_texts_by_embedding(df, mode, embedding_field='embedding_input', similarity_threshold=0.8):
|
| 76 |
+
texts = df[embedding_field].tolist()
|
| 77 |
+
|
| 78 |
+
# 텍스트를 임베딩
|
| 79 |
+
if mode == "BGE":
|
| 80 |
+
embeddings = downsample_model_ori.encode(texts)
|
| 81 |
+
elif mode == "SBERT-snunlp":
|
| 82 |
+
embeddings = downsample_model.encode(texts)
|
| 83 |
+
else:
|
| 84 |
+
embeddings = downsample_model_2.encode(texts)
|
| 85 |
+
|
| 86 |
+
# 코사인 유사도 행렬 계산
|
| 87 |
+
similarity_matrix = cosine_similarity(embeddings)
|
| 88 |
+
np.fill_diagonal(similarity_matrix, 0)
|
| 89 |
+
|
| 90 |
+
# 유사도가 threshold 이상인 항목 필터링
|
| 91 |
+
filtered_indices = []
|
| 92 |
+
excluded_indices = set()
|
| 93 |
+
|
| 94 |
+
for i in range(len(texts)):
|
| 95 |
+
if i not in excluded_indices:
|
| 96 |
+
filtered_indices.append(i)
|
| 97 |
+
similar_indices = np.where(similarity_matrix[i] > similarity_threshold)[0]
|
| 98 |
+
excluded_indices.update(similar_indices)
|
| 99 |
+
|
| 100 |
+
return df.iloc[filtered_indices].reset_index(drop=True)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def search_kpi(kpi_query, kpi_count, mode):
|
| 104 |
+
if mode == "BGE":
|
| 105 |
+
print("BGE 검색 시작")
|
| 106 |
+
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 107 |
+
elif mode == "SBERT-snunlp":
|
| 108 |
+
print("SBERT-snunlp 검색 시작")
|
| 109 |
+
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 110 |
+
else:
|
| 111 |
+
print("SBERT-jhgan 검색 시작")
|
| 112 |
+
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# 메타데이터 + 점수 추출
|
| 116 |
+
records = [
|
| 117 |
+
{**doc.metadata, '유사도점수': score}
|
| 118 |
+
for doc, score in results
|
| 119 |
+
]
|
| 120 |
+
|
| 121 |
+
# DataFrame으로 변환
|
| 122 |
+
df = pd.DataFrame(records)
|
| 123 |
+
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
|
| 124 |
+
df = df.drop_duplicates(subset=['정의', '산식']).head(15)
|
| 125 |
+
df = df.iloc[:kpi_count]
|
| 126 |
+
df = df.reset_index(drop=True)
|
| 127 |
+
|
| 128 |
+
# 카테고리 생성 (BSC 관점 + 전략방향)
|
| 129 |
+
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
|
| 130 |
+
visible_df = df[['지표명', '산식', '비고', '카테고리']].copy()
|
| 131 |
+
kpi_list = list(range(1, len(visible_df) + 1))
|
| 132 |
+
kpi_df = df[['지표명', '정의', '산식', '유형', '비고', 'BSC 관점', '전략방향', '전략과제']].copy()
|
| 133 |
+
|
| 134 |
+
return gr.update(visible=True), gr.update(choices=kpi_list), visible_df, kpi_df, kpi_list, gr.update(visible=False)
|
| 135 |
+
|
| 136 |
+
def search_kpi_one(kpi_query, kpi_count, mode):
|
| 137 |
+
if mode == "BGE":
|
| 138 |
+
print("BGE 검색 시작")
|
| 139 |
+
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 140 |
+
elif mode == "SBERT-snunlp":
|
| 141 |
+
print("SBERT-snunlp 검색 시작")
|
| 142 |
+
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 143 |
+
else:
|
| 144 |
+
print("SBERT-jhgan 검색 시작")
|
| 145 |
+
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
|
| 146 |
+
|
| 147 |
+
# 메타데이터 + 점수 추출
|
| 148 |
+
records = [
|
| 149 |
+
{**doc.metadata, '유사도점수': score}
|
| 150 |
+
for doc, score in results
|
| 151 |
+
]
|
| 152 |
+
|
| 153 |
+
# DataFrame으로 변환
|
| 154 |
+
df = pd.DataFrame(records)
|
| 155 |
+
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
|
| 156 |
+
df = df.drop_duplicates(subset=['정의', '산식']).head(15)
|
| 157 |
+
df = df.iloc[:kpi_count]
|
| 158 |
+
df = df.reset_index(drop=True)
|
| 159 |
+
|
| 160 |
+
# 카테고리 생성 (BSC 관점 + 전략방향)
|
| 161 |
+
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
|
| 162 |
+
visible_df = df[['지표명', '산식', '비고']].copy()
|
| 163 |
+
kpi_list = list(range(1, len(visible_df) + 1))
|
| 164 |
+
kpi_df = df[['지표명', '정의', '산식', '유형', '비고', 'BSC 관점', '전략방향', '전략과제']].copy()
|
| 165 |
+
|
| 166 |
+
return visible_df, kpi_df, kpi_list
|
| 167 |
+
|
| 168 |
+
def format_df_html(df):
|
| 169 |
+
html = ""
|
| 170 |
+
for i, row in df.iterrows():
|
| 171 |
+
html += f"""
|
| 172 |
+
<div style="margin-bottom: 5px;">
|
| 173 |
+
<span style="font-size: 18px; font-weight: bold;">[{i+1}] {row['지표명']}</span><br>
|
| 174 |
+
<span style="font-size: 13px; color: gray;">{row['비고']}</span><br>
|
| 175 |
+
<div style="margin-top: 5px; font-size: 14px; color: #333;">{row['산식']}
|
| 176 |
+
</div>
|
| 177 |
+
<div style="height: 8px;"></div>
|
| 178 |
+
</div>
|
| 179 |
+
"""
|
| 180 |
+
return html
|
| 181 |
+
|
| 182 |
+
def search_kpi_all_models(kpi_query, kpi_count):
|
| 183 |
+
print("함수 호출, 테이블 생성 시작")
|
| 184 |
+
# 각 모델별 결과
|
| 185 |
+
visible_bge, kpi_bge, list_bge = search_kpi_one(kpi_query, kpi_count, "BGE")
|
| 186 |
+
visible_sn, kpi_sn, list_sn = search_kpi_one(kpi_query, kpi_count, "SBERT-snunlp")
|
| 187 |
+
visible_jh, kpi_jh, list_jh = search_kpi_one(kpi_query, kpi_count, "SBERT-jhgan")
|
| 188 |
+
print("함수 종료")
|
| 189 |
+
|
| 190 |
+
visible_df = [visible_bge, visible_sn, visible_jh]
|
| 191 |
+
visible_df_text = [format_df_html(df) for df in visible_df]
|
| 192 |
+
|
| 193 |
+
#gr.update(visible=True), gr.update(choices=kpi_list), visible_df, kpi_df, kpi_list, gr.update(visible=False)
|
| 194 |
+
|
| 195 |
+
return (
|
| 196 |
+
gr.update(visible=True),
|
| 197 |
+
gr.update(choices=list_bge), #체크박스리스트
|
| 198 |
+
gr.update(choices=list_sn),
|
| 199 |
+
gr.update(choices=list_jh),
|
| 200 |
+
visible_df_text[0], # kpi_table1
|
| 201 |
+
visible_df_text[1], # kpi_table2
|
| 202 |
+
visible_df_text[2], # kpi_table3
|
| 203 |
+
kpi_bge, kpi_sn, kpi_jh,
|
| 204 |
+
list_bge, list_sn, list_jh,
|
| 205 |
+
gr.update(visible=False)
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
# 셀 주소와 값을 매핑한 딕셔너리 생성
|
| 211 |
+
def make_excel_table(dataframe, start_cell):
|
| 212 |
+
table_dict = {}
|
| 213 |
+
|
| 214 |
+
# 시작 셀 좌표 계산
|
| 215 |
+
start_row = int(''.join(filter(str.isdigit, start_cell))) # 시작 행 (숫자)
|
| 216 |
+
start_col = ord(start_cell[0].upper()) - ord('A') + 1 # 시작 열 (문자 -> 숫자)
|
| 217 |
+
|
| 218 |
+
# 데이터프레임 반복 처리
|
| 219 |
+
for row_index, row in enumerate(dataframe.itertuples(index=False), start=start_row):
|
| 220 |
+
for col_index, value in enumerate(row, start=start_col):
|
| 221 |
+
# 셀 주소 계산 (예: B5, C5, ...)
|
| 222 |
+
cell = f"{chr(ord('A') + col_index - 1)}{row_index}"
|
| 223 |
+
table_dict[cell] = value
|
| 224 |
+
|
| 225 |
+
return table_dict
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# 다운로드 파일 생성 함수
|
| 229 |
+
def generate_excel(df1, df2, df3, kpi_list1, kpi_list2, kpi_list3, kpi_query):
|
| 230 |
+
#각 모델별 filtered_df 생성
|
| 231 |
+
def get_filtered(df, kpi_list, model_name):
|
| 232 |
+
if kpi_list:
|
| 233 |
+
indices = [int(i) - 1 for i in kpi_list] # -1 보정
|
| 234 |
+
filtered = df.iloc[indices].copy()
|
| 235 |
+
filtered["출처"] = model_name
|
| 236 |
+
return filtered
|
| 237 |
+
else:
|
| 238 |
+
# 선택된 KPI 없을 때: 빈 DataFrame 반환
|
| 239 |
+
return pd.DataFrame(columns=list(df.columns) + ["출처"])
|
| 240 |
+
|
| 241 |
+
# 인덱스(-1 보정)로 DataFrame 필터링
|
| 242 |
+
#filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)
|
| 243 |
+
filtered_df1 = get_filtered(df1, kpi_list1, "BGE3")
|
| 244 |
+
filtered_df2 = get_filtered(df2, kpi_list2, "snunlp")
|
| 245 |
+
filtered_df3 = get_filtered(df3, kpi_list3, "jhgan")
|
| 246 |
+
|
| 247 |
+
filtered_df = pd.concat([filtered_df1, filtered_df2, filtered_df3], ignore_index=True) #필터링내용 병합
|
| 248 |
+
filtered_df = filtered_df.drop_duplicates(subset='산식') # '산식' 기준 중복 제거
|
| 249 |
+
|
| 250 |
+
# 엑셀 파일 열기
|
| 251 |
+
file_path = "./template.xlsx"
|
| 252 |
+
workbook = load_workbook(file_path)
|
| 253 |
+
sheet = workbook.active
|
| 254 |
+
|
| 255 |
+
update_values = make_excel_table(filtered_df, 'B4')
|
| 256 |
+
for cell, value in update_values.items():
|
| 257 |
+
sheet[cell].value = value
|
| 258 |
+
|
| 259 |
+
# 워크시트 기본 확대 수준 설정(%)
|
| 260 |
+
sheet.sheet_view.zoomScaleNormal = 85
|
| 261 |
+
|
| 262 |
+
# 파일 저장
|
| 263 |
+
|
| 264 |
+
filename = f"KPI_POOL_{kpi_query}.xlsx"
|
| 265 |
+
|
| 266 |
+
safe_filename = re.sub(r'\s*/\s*', '_', filename)
|
| 267 |
+
safe_filename = re.sub(r'\s+', ' ', safe_filename)
|
| 268 |
+
output_file = safe_filename.strip()
|
| 269 |
+
|
| 270 |
+
workbook.save(output_file)
|
| 271 |
+
|
| 272 |
+
return gr.update(value=output_file, visible=True)
|
| 273 |
+
|
| 274 |
+
def toggle_selection(current_selection, kpi_list):
|
| 275 |
+
if set(current_selection) == set(kpi_list): # 이미 전체 선택된 경우
|
| 276 |
+
return []
|
| 277 |
+
else: # 전체 선택 안 된 경우
|
| 278 |
+
return kpi_list
|
| 279 |
+
|
| 280 |
+
def toggle_all_selections(sel1, list1, sel2, list2, sel3, list3):
|
| 281 |
+
def toggle(current, full_list):
|
| 282 |
+
return [] if set(current) == set(full_list) else full_list
|
| 283 |
+
|
| 284 |
+
return (
|
| 285 |
+
toggle(sel1, list1),
|
| 286 |
+
toggle(sel2, list2),
|
| 287 |
+
toggle(sel3, list3)
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
css = """
|
| 291 |
+
/* 데이터프레임 스타일 */
|
| 292 |
+
.gradio-container table {
|
| 293 |
+
table-layout: fixed;
|
| 294 |
+
width: 100%;
|
| 295 |
+
}
|
| 296 |
+
.gradio-container td{
|
| 297 |
+
white-space: nowrap !important;
|
| 298 |
+
overflow-x: auto !important;
|
| 299 |
+
text-align: left;
|
| 300 |
+
font-size: 13px;
|
| 301 |
+
letter-spacing: -1px !important;
|
| 302 |
+
}
|
| 303 |
+
/* 헤더 기본 스타일 */
|
| 304 |
+
.gradio-container th[aria-sort]::after {
|
| 305 |
+
visibility: hidden !important; /* 아이콘만 감춤 */
|
| 306 |
+
}
|
| 307 |
+
.gradio-container th .header-content {
|
| 308 |
+
justify-content: center !important;
|
| 309 |
+
text-align: center;
|
| 310 |
+
font-size: 13px;
|
| 311 |
+
letter-spacing: -1px !important;
|
| 312 |
+
}
|
| 313 |
+
.gradio-container th span {
|
| 314 |
+
text-align: center !important;
|
| 315 |
+
display: block !important;
|
| 316 |
+
width: 100%;
|
| 317 |
+
}
|
| 318 |
+
.v_check { padding-top: 39px !important;
|
| 319 |
+
margin-right: 0px !important;
|
| 320 |
+
padding-right: 0px !important;
|
| 321 |
+
margin-left: 0px !important;
|
| 322 |
+
padding-left: 0px !important;
|
| 323 |
+
}
|
| 324 |
+
.v_check div { display: block !important; }
|
| 325 |
+
.v_check label {
|
| 326 |
+
max-width: 80%; /* 전체 너비 유지 */
|
| 327 |
+
padding: 2px; /* 내부 여백 조정 */
|
| 328 |
+
margin-bottom: 52px; /* 라벨 간 간격 설정 */
|
| 329 |
+
border: 1px solid transparent !important;
|
| 330 |
+
letter-spacing: -1px !important; /* 자간 좁게 설정*/
|
| 331 |
+
justify-content: center;
|
| 332 |
+
}
|
| 333 |
+
div.svelte-1nguped {
|
| 334 |
+
background: transparent !important;
|
| 335 |
+
border: none !important;
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
.left-padding { padding-left: 43px !important; /* 왼쪽 패딩 추가 */ }
|
| 339 |
+
|
| 340 |
+
.custom-markdown h3 {
|
| 341 |
+
font-size: 18px; /* 본문 및 목록 글자 크기 */
|
| 342 |
+
}
|
| 343 |
+
.custom-markdown blockquote {
|
| 344 |
+
margin-bottom: 8px !important;
|
| 345 |
+
}
|
| 346 |
+
.custom-markdown p, .custom-markdown li {
|
| 347 |
+
margin-top: 8px !important;
|
| 348 |
+
font-size: 15px; /* 본문 및 목록 글자 크기 */
|
| 349 |
+
line-height: 1.5;
|
| 350 |
+
}
|
| 351 |
+
.custom-markdown a {
|
| 352 |
+
font-size: 15px;
|
| 353 |
+
color: #000000;
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
.no-margine {
|
| 357 |
+
margin-bottom: 0px !important;
|
| 358 |
+
padding-bottom: 0px !important;
|
| 359 |
+
margin-top: 0px !important;
|
| 360 |
+
padding-top: 0px !important;
|
| 361 |
+
gap: 0px !important;
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
"""
|
| 366 |
+
|
| 367 |
+
guide = """> ### 저작권 및 유의사항 안내
|
| 368 |
+
- 본 앱은 시앤피컨설팅이 개발한 KPI POOL 검색 도구로, AI 기반 추천 결과는 참고용으로 제공됩니다.
|
| 369 |
+
- AI 기반 추천 알고리즘은 전문 컨설팅을 대체할 수 없으며, 반드시 조직의 전략, 평가 목적, 데이터 수집 가능성 등과의 적합성 검토가 필요합니다.
|
| 370 |
+
- KPI 설정과 적용에 대한 개별 맞춤 검토는 시앤피컨설팅의 전문 컨설턴트에게 문의해 주세요.
|
| 371 |
+
<br><br>
|
| 372 |
+
> ### Contact Us
|
| 373 |
+
시앤피컨설팅그룹 일터혁신본부 | Tel. 02-6257-1448 | http://www.cnp.re.kr | hpw@cnp.re.kr
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
empty_df = pd.DataFrame(columns=["지표명", "산식", "비고", "카테고리"])
|
| 377 |
+
|
| 378 |
+
with gr.Blocks(css=css, fill_width=True) as demo:
|
| 379 |
+
|
| 380 |
+
df_state1 = gr.State()
|
| 381 |
+
df_state2 = gr.State()
|
| 382 |
+
df_state3 = gr.State()
|
| 383 |
+
check_state1 = gr.State()
|
| 384 |
+
check_state2 = gr.State()
|
| 385 |
+
check_state3 = gr.State()
|
| 386 |
+
|
| 387 |
+
with gr.Row():
|
| 388 |
+
#mode = gr.Dropdown(choices={"BGE","SBERT-snunlp","SBERT-jhgan"}, label="모델을 선택하세요")
|
| 389 |
+
gr.Markdown(" ")
|
| 390 |
+
with gr.Tab("KPI Pool 검색"):
|
| 391 |
+
with gr.Column(elem_classes="left-padding"):
|
| 392 |
+
with gr.Row(equal_height=True):
|
| 393 |
+
kpi_query = gr.Textbox(scale=30, submit_btn=True,
|
| 394 |
+
label= "성과평가를 진행할 [핵심업무 or 핵심성공요인]을 입력해주세요😊! (검색 키워드는 직무기술서 또는 NCS 능력단위 참고)",
|
| 395 |
+
placeholder="예: 자금 → 자금조달 / 재무위험관리 / 자금운용")
|
| 396 |
+
kpi_count = gr.Slider(label="KPI 출력 개수", value = 7, minimum=5, maximum=10, step=1, scale=7)
|
| 397 |
+
|
| 398 |
+
copyright = gr.Markdown(guide, visible=True, elem_classes="custom-markdown")
|
| 399 |
+
|
| 400 |
+
with gr.Column(visible=False) as output_area:
|
| 401 |
+
with gr.Group():
|
| 402 |
+
with gr.Row():
|
| 403 |
+
with gr.Group():
|
| 404 |
+
with gr.Tab("BAAI"):
|
| 405 |
+
with gr.Row():
|
| 406 |
+
kpi_checkbox1 = gr.CheckboxGroup(choices=[], interactive=True, elem_classes="v_check", container=False, min_width=5, scale=1)
|
| 407 |
+
with gr.Column(scale=11):
|
| 408 |
+
kpi_table1 = gr.HTML(label="BGE 결과")
|
| 409 |
+
|
| 410 |
+
with gr.Group():
|
| 411 |
+
with gr.Tab("snunlp"):
|
| 412 |
+
with gr.Row():
|
| 413 |
+
kpi_checkbox2 = gr.CheckboxGroup(choices=[], interactive=True, elem_classes="v_check", container=False, min_width=5, scale=1)
|
| 414 |
+
with gr.Column(scale=11):
|
| 415 |
+
kpi_table2 = gr.HTML(label="SBERT-snunlp 결과")
|
| 416 |
+
|
| 417 |
+
with gr.Group():
|
| 418 |
+
with gr.Tab("jhgan"):
|
| 419 |
+
with gr.Row():
|
| 420 |
+
kpi_checkbox3 = gr.CheckboxGroup(choices=[], interactive=True, elem_classes="v_check", container=False, min_width=5, scale=1)
|
| 421 |
+
with gr.Column(scale=11):
|
| 422 |
+
kpi_table3 = gr.HTML(label="SBERT-jhgan 결과")
|
| 423 |
+
with gr.Row():
|
| 424 |
+
gr.Column(scale=2)
|
| 425 |
+
select_button = gr.Button("All", scale=1)
|
| 426 |
+
download_button = gr.Button("Download",scale=1)
|
| 427 |
+
clear_button = gr.Button("Clear",scale=1)
|
| 428 |
+
gr.Column(scale=2)
|
| 429 |
+
|
| 430 |
+
file_download = gr.Files(label="Download", interactive=False, visible=False)
|
| 431 |
+
|
| 432 |
+
#kpi_query.submit(search_kpi, inputs = [kpi_query, kpi_count, mode], outputs = [output_area, kpi_checkbox, kpi_table, df_state, check_state, copyright])
|
| 433 |
+
kpi_query.submit(
|
| 434 |
+
search_kpi_all_models,
|
| 435 |
+
inputs = [kpi_query, kpi_count],
|
| 436 |
+
outputs = [
|
| 437 |
+
output_area,
|
| 438 |
+
kpi_checkbox1, kpi_checkbox2, kpi_checkbox3,
|
| 439 |
+
kpi_table1, kpi_table2, kpi_table3,
|
| 440 |
+
df_state1, df_state2, df_state3,
|
| 441 |
+
check_state1,check_state2,check_state3,
|
| 442 |
+
copyright
|
| 443 |
+
]
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
#select_button.click(fn=toggle_selection, inputs=[kpi_checkbox, check_state], outputs=kpi_checkbox, show_progress='hidden')
|
| 447 |
+
select_button.click(
|
| 448 |
+
fn=toggle_all_selections,
|
| 449 |
+
inputs=[
|
| 450 |
+
kpi_checkbox1, check_state1,
|
| 451 |
+
kpi_checkbox2, check_state2,
|
| 452 |
+
kpi_checkbox3, check_state3
|
| 453 |
+
],
|
| 454 |
+
outputs=[
|
| 455 |
+
kpi_checkbox1,
|
| 456 |
+
kpi_checkbox2,
|
| 457 |
+
kpi_checkbox3
|
| 458 |
+
],
|
| 459 |
+
show_progress='hidden'
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
download_button.click(
|
| 463 |
+
generate_excel,
|
| 464 |
+
inputs=[df_state1, df_state2, df_state3, kpi_checkbox1, kpi_checkbox2, kpi_checkbox3, kpi_query],
|
| 465 |
+
outputs=[file_download]
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
clear_button.click(
|
| 469 |
+
fn=lambda: (None, None, None,
|
| 470 |
+
None, gr.update(visible=False),
|
| 471 |
+
gr.update(choices=[], value=[]),gr.update(choices=[], value=[]),gr.update(choices=[], value=[]),
|
| 472 |
+
gr.update(value=""),gr.update(value=""),gr.update(value=""),
|
| 473 |
+
gr.update(value=None, visible=False), gr.update(visible=True)),
|
| 474 |
+
outputs=[df_state1, df_state2, df_state3,
|
| 475 |
+
kpi_query, output_area,
|
| 476 |
+
kpi_checkbox1, kpi_checkbox2, kpi_checkbox3,
|
| 477 |
+
kpi_table1, kpi_table2, kpi_table3,
|
| 478 |
+
file_download, copyright],
|
| 479 |
+
show_progress='hidden'
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
with gr.Tab("[참고] NCS 능력단위"):
|
| 484 |
+
unit_query = gr.Textbox(label="업종 or 직종 + 직무명을 입력하세요😊", scale=1, submit_btn=True,
|
| 485 |
+
placeholder="예: 의약품 법률자문, 공공행정 경영기획, 재무회계 자금")
|
| 486 |
+
with gr.Row():
|
| 487 |
+
with gr.Group():
|
| 488 |
+
unit_result = gr.Markdown()
|
| 489 |
+
#with gr.Group():
|
| 490 |
+
# with gr.Tab("SBERT-snunlp"):
|
| 491 |
+
# unit_result2 = gr.Markdown()
|
| 492 |
+
|
| 493 |
+
unit_query.submit(search_unit, inputs=[unit_query], outputs=[unit_result])
|
| 494 |
+
#unit_query.submit(search_unit_all, inputs=unit_query, outputs=[unit_result1, unit_result2])
|
| 495 |
+
|
| 496 |
+
demo.launch(debug=True)
|
chroma_NCS_241230/chroma.sqlite3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c72fb31a891a48edb728e5843dba0ef6770ee980090040fa8f72addfe8c493e3
|
| 3 |
+
size 31084544
|
chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/data_level0.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd3a5a9831d1617ac3e7598c27ba553147e576ec71eba5853cc055a727129939
|
| 3 |
+
size 4236000
|
chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/header.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:378ffc4871c60c0d0445551b475a2b05d6ffb148da26058c23a985b3b555b647
|
| 3 |
+
size 100
|
chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/index_metadata.pickle
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11c25b3d3fce8262cdb533218b1417b19348543934e829abb1e9397a02cebaff
|
| 3 |
+
size 55952
|
chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/length.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e14c6fe19326be985cdecde2aea3c3b97db912467f86226ec356324b267547cb
|
| 3 |
+
size 4000
|
chroma_NCS_241230/ebccdbbe-758c-4b8f-a83d-ff693ed6136e/link_lists.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4d8434b65f48bb9e57b942d930b40350450ca71ad6d8e747967f0ddba421bbb
|
| 3 |
+
size 8420
|
chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/data_level0.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a9f0db303c11076ee583b209870a5d0fecca706dbcbbeecf2f79075c5e03b4b7
|
| 3 |
+
size 16944000
|
chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/header.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f3cc826c2c7868c474a8118077c214b271742a653835ccc9272e81b0110060b
|
| 3 |
+
size 100
|
chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/index_metadata.pickle
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e76bcc13eb22a154d420b338a7c2a0b173dc701a30dceaf473ddbd9702aab3e
|
| 3 |
+
size 229997
|
chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/length.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecf55833a7fbf8155dd1c4cb95ce88ac4a867c237d37a3336a1918600e127231
|
| 3 |
+
size 16000
|
chroma_kpi_250416/9d0a85b6-70fd-4f2e-9365-fd30d7d39b3f/link_lists.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2798bf29180b7286df84096e1af8903fddc00d78f6669f0c3f9f680514deb668
|
| 3 |
+
size 34836
|
chroma_kpi_250416/chroma.sqlite3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c01587f00d4291b0e13891e1a9deb842dfca081a1eaf1f4be664170b9af3c881
|
| 3 |
+
size 43872256
|
chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/data_level0.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82c055ad7c5550f6c251f61b19ba1505be21a164d1e1f251ebaacff9f6855835
|
| 3 |
+
size 32120000
|
chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/header.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a99decffb1a7dd32ffa29cbdbe273fd8bd6f7452a14f70c8132b82afe79f9549
|
| 3 |
+
size 100
|
chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/index_metadata.pickle
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f69a59ab337882aae5b2b09d2dce571af72e20bbf9f7df1ac55357398f31e7ea
|
| 3 |
+
size 455084
|
chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/length.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7e2dcff542de95352682dc186432e98f0188084896773f1973276b0577d5305
|
| 3 |
+
size 40000
|
chroma_kpi_250528_SBERT/4d649a70-b1cb-4039-90e2-3e333c58b8d5/link_lists.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d015ab2c51ea08a92cf04aee17ecc291a6285ac58b24168755315cd8d651a218
|
| 3 |
+
size 44192
|
chroma_kpi_250528_SBERT/chroma.sqlite3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bfcda17dab8c96c058d9ff96dc7b26874d14d2bfbf647627fec2b8afab87c3d
|
| 3 |
+
size 35680256
|
chroma_kpi_250707_SBERTjhgan/8022c180-484c-40e6-8793-a686ab1771e8/index_metadata.pickle
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96e1a9d07ddd694d951fc1ebe2d7ccd1d717ac6e5eee776e7f2d9746c49ca034
|
| 3 |
+
size 455084
|
chroma_kpi_250707_SBERTjhgan/chroma.sqlite3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:307abb365458b4525914468c8f83951da32d2be2f910d714d43c9363efb6fa98
|
| 3 |
+
size 35676160
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
chromadb>=0.6.9
|
| 2 |
+
langchain-core>=0.3.52
|
| 3 |
+
langchain-chroma>=0.2.3
|
| 4 |
+
langchain-huggingface>=0.1.2
|
| 5 |
+
sentence-transformers>=3.4.1
|
| 6 |
+
transformers==4.42.4
|
| 7 |
+
gradio
|
| 8 |
+
torch>=2.2.0
|
| 9 |
+
numpy>=1.26.4
|
| 10 |
+
pandas>=2.1.4
|
| 11 |
+
scikit-learn>=1.3.2
|
| 12 |
+
openpyxl==3.1.5
|
template.xlsx
ADDED
|
Binary file (11.6 kB). View file
|
|
|